Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Genes Dev ; 33(11-12): 656-668, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923168

RESUMO

Transcription factors (TFs) are dosage-sensitive master regulators of gene expression, with haploinsufficiency frequently leading to life-threatening disease. Numerous mechanisms have evolved to tightly regulate the expression and activity of TFs at the transcriptional, translational, and posttranslational levels. A subset of long noncoding RNAs (lncRNAs) is spatially correlated with transcription factors in the genome, but the regulatory relationship between these lncRNAs and their neighboring TFs is unclear. We identified a regulatory feedback loop between the TF Foxa2 and a downstream lncRNA, Falcor (Foxa2-adjacent long noncoding RNA). Foxa2 directly represses Falcor expression by binding to its promoter, while Falcor functions in cis to positively regulate the expression of Foxa2. In the lung, loss of Falcor is sufficient to lead to chronic inflammatory changes and defective repair after airway epithelial injury. Moreover, disruption of the Falcor-Foxa2 regulatory feedback loop leads to altered cell adhesion and migration, in turn resulting in chronic peribronchial airway inflammation and goblet cell metaplasia. These data reveal that the lncRNA Falcor functions within a regulatory feedback loop to fine-tune the expression of Foxa2, maintain airway epithelial homeostasis, and promote regeneration.


Assuntos
Células Epiteliais/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Pulmão/citologia , Pulmão/metabolismo , RNA Longo não Codificante/genética , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Regeneração , Transcrição Gênica
2.
J Biol Chem ; 300(1): 105535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072043

RESUMO

Renal cell carcinoma (RCC) is a frequent malignancy of the urinary system with high mortality and morbidity. However, the molecular mechanisms underlying RCC progression are still largely unknown. In this study, we identified FOXA2, a pioneer transcription factor, as a driver oncogene for RCC. We show that FOXA2 was commonly upregulated in human RCC samples and promoted RCC proliferation, as evidenced by assays of cell viability, colony formation, migratory and invasive capabilities, and stemness properties. Mechanistically, we found that FOXA2 promoted RCC cell proliferation by transcriptionally activating HIF2α expression in vitro and in vivo. Furthermore, we found that FOXA2 could interact with VHL (von Hippel‒Lindau), which ubiquitinated FOXA2 and controlled its protein stability in RCC cells. We showed that mutation of lysine at position 264 to arginine in FOXA2 could mostly abrogate its ubiquitination, augment its activation effect on HIF2α expression, and promote RCC proliferation in vitro and RCC progression in vivo. Importantly, elevated expression of FOXA2 in patients with RCC positively correlated with the expression of HIF2α and was associated with shorter overall and disease-free survival. Together, these findings reveal a novel role of FOXA2 in RCC development and provide insights into the underlying molecular mechanisms of FOXA2-driven pathological processes in RCC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Carcinoma de Células Renais , Fator 3-beta Nuclear de Hepatócito , Neoplasias Renais , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Progressão da Doença
3.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252148

RESUMO

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Assuntos
Fator 3-beta Nuclear de Hepatócito , Subunidades beta de Inibinas , Ácido Metilmalônico , Neoplasias Pancreáticas , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Subunidades beta de Inibinas/genética , Pâncreas , Neoplasias Pancreáticas/genética , Ativação Transcricional
4.
Dev Biol ; 502: 20-37, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423592

RESUMO

The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.


Assuntos
Endoderma , Redes Reguladoras de Genes , Proteína Proto-Oncogênica N-Myc/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento/genética
5.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34323272

RESUMO

During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.


Assuntos
Processamento Alternativo/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Splicing de RNA/genética , Timócitos/fisiologia , Animais , Éxons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Processamento de RNA/genética , Linfócitos T/fisiologia , Timo/fisiologia
6.
Microb Pathog ; 188: 106570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341108

RESUMO

High-concentrate diet induce subacute ruminal acidosis (SARA) and cause liver damage in ruminants. It has been reported that forkhead box protein A2 (FOXA2) can enhance mitochondrial membrane potential but its function in mitochondrial dysfunction induced by high concentrate diets is still unknown. Therefore, the aim of this study was to elucidate the effect of high-concentrate (HC) diet on hepatic FOXA2 expression, mitochondrial unfolded protein response (UPRmt), mitochondrial dysfunction and oxidative stress. A total of 12 healthy mid-lactation Holstein cows were selected and randomized into 2 groups: the low concentrate (LC) diet group (concentrate:forage = 4:6) and HC diet group (concentrate:forage = 6:4). The trial lasted 21 d. The rumen fluid, blood and liver tissue were collected at the end of the experiment. The results showed that the rumen fluid pH level was reduced in the HC group and the pH was lower than 5.6 for more than 4 h/d, indicating that feeding HC diets successfully induced SARA in dairy cows. Both FOXA2 mRNA and protein abundance were significantly reduced in the liver of the HC group compared with the LC group. The activity of antioxidant enzymes (CAT, G6PDH, T-SOD, Cu/Zn SOD, Mn SOD) and mtDNA copy number in the liver tissue of the HC group decreased, while the level of H2O2 significantly increased, this increase was accompanied by a decrease in oxidative phosphorylation (OXPHOS). The balance of mitochondrial division and fusion was disrupted in the HC group, as evidenced by the decreased mRNA level of OPA1, MFN1, and MFN2 and increased mRNA level of Drp1, Fis1, and MFF. At the same time, HC diet downregulated the expression level of SIRT1, SIRT3, PGC-1α, TFAM, and Nrf 1 to inhibit mitochondrial biogenesis. The HC group induced UPRmt in liver tissue by upregulating the mRNA and protein levels of CLPP, LONP1, CHOP, Hsp10, and Hsp60. In addition, HC diet could increase the protein abundance of Bax, CytoC, Caspase 3 and Cleaved-Caspase 3, while decrease the protein abundance of Bcl-2 and the Bcl-2/Bax ratio. Overall, our study suggests that the decreased expression of FOXA2 may be related to UPRmt, mitochondrial dysfunction, oxidative stress, and apoptosis in the liver of dairy cows fed a high concentrate diet.


Assuntos
Peróxido de Hidrogênio , Doenças Mitocondriais , Animais , Feminino , Bovinos , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Dieta/veterinária , Fígado/metabolismo , Lactação , Estresse Oxidativo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo , Resposta a Proteínas não Dobradas , Doenças Mitocondriais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Leite/metabolismo , Concentração de Íons de Hidrogênio , Ração Animal
7.
FASEB J ; 37(1): e22652, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515690

RESUMO

FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.


Assuntos
Fígado , Células-Tronco Pluripotentes , Humanos , Camundongos , Animais , Diferenciação Celular/fisiologia , Fígado/metabolismo , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo
8.
Exp Cell Res ; 426(1): 113539, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889571

RESUMO

BACKGROUND: Endometriosis is a severe disease which is associated with excessive activation of pyroptosis. Our present research aimed to investigate the function of Forkhead Box A2 (FoxA2) in regulating pyroptosis in endometriosis. METHODS: IL-1ß and IL-18 concentrations were assessed using ELISA. Cell pyroptosis was analyzed using flow cytometry. TUNEL staining was performed to determine human endometrial stromal cells (HESC) death. Moreover, ERß mRNA stability was assessed using RNA degradation assay. Finally, the binding relationships between FoxA2, IGF2BP1 and ERß were verified by dual-luciferase reporter system, ChIP, RIP and RNA pull-down assays. RESULTS: Our results revealed that IGF2BP1 and ERß were significantly upregulated in ectopic endometrium (EC) tissues of endometriosis patients compared to that in eutopic endometrium (EU) tissues as well as IL-18 and IL-1ß levels. Loss-of-function experiments subsequently demonstrated that either IGF2BP1 knockdown or ERß knockdown could repress HESC pyroptosis. In addition, IGF2BP1 upregulation promoted the pyroptosis in endometriosis by binding to ERß and promoting ERß mRNA stability. Our further research displayed that FoxA2 upregulation suppressed HESC pyroptosis by interacting with IGF2BP1 promoter. CONCLUSION: Our research proved that FoxA2 upregulation downregulated ERß by transcriptionally inhibiting IGF2BP1, thereby repressing pyroptosis in endometriosis.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/genética , Endometriose/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Piroptose/genética , Interleucina-18/metabolismo , Endométrio , Células Estromais/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo
9.
Biochem Genet ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316306

RESUMO

The metabolic imbalance of glutathione (GSH) has been widely recognized in most cancers, but the specific molecular mechanism of GSH metabolic regulation in the malignant progression of colorectal cancer (CRC) is unexplored. The objective of our project is to elucidate whether ETV4 affects the malignant progression of CRC through GSH metabolic reprogramming. Bioinformatics and molecular experiments measured the expression of ETV4 in CRC, and in vitro experiments explored the impact of ETV4 on CRC malignant progression. The Kyoto Encyclopedia of Genes and Genomes (KEGG) identified the pathway of ETV4 enrichment. The bioinformatics approach identified FOXA2 as an upstream regulatory factor of ETV4. The dual-luciferase assay, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) experiment verified the binding relationship between ETV4 and FOXA2. Cell viability, migration, and invasion abilities were determined by conducting CCK-8, wound healing, and Transwell assays, respectively. The expression levels of N-cadherin, E-cadherin, and vimentin were determined by utilizing immunofluorescence (IF). Metabolism-related enzymes GCLM, GCLC, and GSTP1 levels were detected to evaluate the GSH metabolism level by analyzing the GSH/GSSG ratio. In vivo experiments were performed to explore the effect of FOXA2/ETV4 on CRC progression, and the expression of related proteins was detected by western blot. ETV4 was highly expressed in CRC. Knocking down ETV4 suppressed CRC cell viability, migration, invasion, and epithelial-mesenchymal transition (EMT) progression in vitro. ETV4 was abundant in the GSH metabolic pathway, and overexpression of ETV4 facilitated CRC malignant progression through activation of the GSH metabolism. In addition, in vitro cellular experiments and in vivo experiments in nude mice confirmed that FOXA2 transcriptionally activated ETV4. Knocking down FOXA2 repressed the malignant phenotype of CRC cells by suppressing GSH metabolism. These effects were reversed by overexpressing ETV4. Our results indicated that FOXA2 transcriptionally activates ETV4 to facilitate CRC malignant progression by modulating the GSH metabolic pathway. Targeting the FOXA2/ETV4 axis or GSH metabolism may be an effective approach for CRC treatment.

10.
Environ Toxicol ; 39(2): 708-722, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665156

RESUMO

BACKGROUND: Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS: FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS: FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION: FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.


Assuntos
Neoplasias da Vesícula Biliar , Animais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA