Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.500
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39181133

RESUMO

Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.

2.
Cell ; 187(18): 5048-5063.e25, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106863

RESUMO

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.


Assuntos
Actomiosina , RNA Mensageiro , Proteínas de Ligação a RNA , Transdução de Sinais , Proteína rhoA de Ligação ao GTP , Humanos , Actomiosina/metabolismo , Citoplasma/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Proteína rhoA de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
3.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134876

RESUMO

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expansão das Repetições de Trinucleotídeos , Metilação de DNA , Mutação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
4.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
5.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007263

RESUMO

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Assuntos
Variação Estrutural do Genoma/genética , Genômica/métodos , Neoplasias/genética , Inversão Cromossômica/genética , Cromotripsia , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Genoma Humano/genética , Humanos , Mutação/genética , Sequenciamento Completo do Genoma/métodos
6.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795412

RESUMO

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , RNA Mensageiro , Sinapses/metabolismo
7.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456084

RESUMO

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Assuntos
Metilação de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Edição de Genes , Neurônios/patologia , Animais , Proteína 9 Associada à CRISPR/metabolismo , Epigênese Genética , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Masculino , Camundongos , Neurônios/metabolismo , Fenótipo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
8.
Cell ; 174(5): 1127-1142.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078706

RESUMO

Replication origins, fragile sites, and rDNA have been implicated as sources of chromosomal instability. However, the defining genomic features of replication origins and fragile sites are among the least understood elements of eukaryote genomes. Here, we map sites of replication initiation and breakage in primary cells at high resolution. We find that replication initiates between transcribed genes within nucleosome-depleted structures established by long asymmetrical poly(dA:dT) tracts flanking the initiation site. Paradoxically, long (>20 bp) (dA:dT) tracts are also preferential sites of polar replication fork stalling and collapse within early-replicating fragile sites (ERFSs) and late-replicating common fragile sites (CFSs) and at the rDNA replication fork barrier. Poly(dA:dT) sequences are fragile because long single-strand poly(dA) stretches at the replication fork are unprotected by the replication protein A (RPA). We propose that the evolutionary expansion of poly(dA:dT) tracts in eukaryotic genomes promotes replication initiation, but at the cost of chromosome fragility.


Assuntos
Replicação do DNA , DNA Ribossômico/química , Nucleossomos/metabolismo , Poli dA-dT/química , Origem de Replicação , Motivos de Aminoácidos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Instabilidade Cromossômica , Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae , Schizosaccharomyces , Sítio de Iniciação de Transcrição , Transcrição Gênica
9.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30173918

RESUMO

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Assuntos
Cromatina/genética , Repetições de Microssatélites/fisiologia , Expansão das Repetições de Trinucleotídeos/fisiologia , Adulto , Encéfalo/citologia , Encéfalo/patologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/fisiologia , Linhagem Celular , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Ilhas de CpG/genética , Ilhas de CpG/fisiologia , DNA/genética , Doença/etiologia , Doença/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repetições de Microssatélites/genética , Expansão das Repetições de Trinucleotídeos/genética
10.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735753

RESUMO

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Assuntos
Fragilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Neoplasias/genética , Animais , Linfócitos B/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Repressoras/metabolismo
11.
Mol Cell ; 83(20): 3596-3607, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37716351

RESUMO

Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.


Assuntos
Reparo do DNA , Replicação do DNA , Humanos , Fase S/genética , Mitose/genética , Replicação Viral
12.
Mol Cell ; 82(20): 3781-3793.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099913

RESUMO

Germline mutations in the BRCA genes are associated with a higher risk of carcinogenesis, which is linked to an increased mutation rate and loss of the second unaffected BRCA allele (loss of heterozygosity, LOH). However, the mechanisms triggering mutagenesis are not clearly understood. The BRCA genes contain high numbers of repetitive DNA sequences. We detected replication forks stalling, DNA breaks, and deletions at these sites in haploinsufficient BRCA cells, thus identifying the BRCA genes as fragile sites. Next, we found that stalled forks are repaired by error-prone pathways, such as microhomology-mediated break-induced replication (MMBIR) in haploinsufficient BRCA1 breast epithelial cells. We detected MMBIR mutations in BRCA1 tumor cells and noticed deletions-insertions (>50 bp) at the BRCA1 genes in BRCA1 patients. Altogether, these results suggest that under stress, error-prone repair of stalled forks is upregulated and induces mutations, including complex genomic rearrangements at the BRCA genes (LOH), in haploinsufficient BRCA1 cells.


Assuntos
Proteína BRCA1 , Replicação do DNA , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparo do DNA , Mutagênese , Genes BRCA1 , Perda de Heterozigosidade , Proteína BRCA2/genética , Proteína BRCA2/metabolismo
13.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002000

RESUMO

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Assuntos
Replicação do DNA , Rad51 Recombinase , Cromossomos/metabolismo , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética , Transcrição Gênica
14.
Mol Cell ; 82(15): 2779-2796.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35675814

RESUMO

Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Proto-Oncogênicas c-akt , Animais , Códon sem Sentido/genética , Éxons/genética , Mamíferos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
15.
Mol Cell ; 82(23): 4564-4581.e11, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356584

RESUMO

How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Síndrome do Cromossomo X Frágil/genética
16.
Genes Dev ; 36(17-18): 951-953, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347559

RESUMO

Although telomeres are essential for chromosome stability, they represent fragile structures in our genome. Telomere shortening occurs during aging in cells lacking telomerase due to the end replication problem. In addition, recent work uncovered that the bulk of telomeric DNA poses severe hurdles for the semiconservative DNA replication machinery, requiring the assistance of an increasing number of specialized factors that prevent accidental telomere loss or damage events. In this issue of Genes & Development, Yang and colleagues (pp. 956-969) discover that TFIIH, a basic component of the PolII transcription initiation and nucleotide excision repair machinery, facilitates telomere replication. TFIIH is recruited to telomeres by the shelterin component TRF1, taking on at telomeres a moonlighting function.


Assuntos
Telomerase , Proteína 1 de Ligação a Repetições Teloméricas , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Telomerase/metabolismo , Complexo Shelterina
17.
Genes Dev ; 36(17-18): 956-969, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229075

RESUMO

Telomeric DNA challenges the replisome and requires TRF1 for efficient duplication. TRF1 recruits the BLM helicase, but BLM loss does not explain the extensive telomere fragility, ATR signaling, and sister telomere associations (STAs) induced by TRF1 deletion. Here, we document that Helix2 of the TRFH domain and Helix1 of the Myb domain of TRF1 are required for efficient telomere replication. Mutation of both helices generated a TRF1 separation-of-function mutant (TRF1-E83K/LW-TI) that induced severe telomere replication defects but no ATR signaling or STAs. We identified the transcription and nucleotide excision repair (NER) factor TFIIH as a critical effector of TRF1. Loss of TFIIH subunits, but no other NER factors, caused the same telomere replication phenotypes as the TRF1-E83K/LW-TI mutant independent of the effects on TRF1 expression. TFIIH subunits coimmunoprecipitated with wild-type TRF1 but not with TRF1-E83K/LW-TI. These results establish that the major mechanism by which TRF1 ensures telomere replication involves a noncanonical function of TFIIH.


Assuntos
Telômero , Proteína 1 de Ligação a Repetições Teloméricas , Telômero/genética , Telômero/metabolismo , Replicação do DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA/metabolismo
18.
Mol Cell ; 77(6): 1176-1192.e16, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999954

RESUMO

Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.


Assuntos
Transtorno Autístico/fisiopatologia , Disfunção Cognitiva/patologia , Fator de Iniciação Eucariótico 4G/fisiologia , Éxons/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neuroblastoma/patologia , Neurônios/patologia , Animais , Comportamento Animal , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurogênese , Neurônios/metabolismo , Biossíntese de Proteínas , Splicing de RNA , Células Tumorais Cultivadas
19.
Genes Dev ; 34(19-20): 1392-1405, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883681

RESUMO

TRF1 facilitates the replication of telomeric DNA in part by recruiting the BLM helicase, which can resolve G-quadruplexes on the lagging-strand template. Lagging-strand telomeres lacking TRF1 or BLM form fragile telomeres-structures that resemble common fragile sites (CFSs)-but how they are formed is not known. We report that analogous to CFSs, fragile telomeres in BLM-deficient cells involved double-strand break (DSB) formation, in this case by the SLX4/SLX1 nuclease. The DSBs were repaired by POLD3/POLD4-dependent break-induced replication (BIR), resulting in fragile telomeres containing conservatively replicated DNA. BIR also promoted fragile telomere formation in cells with FokI-induced telomeric DSBs and in alternative lengthening of telomeres (ALT) cells, which have spontaneous telomeric damage. BIR of telomeric DSBs competed with PARP1-, LIG3-, and XPF-dependent alternative nonhomologous end joining (alt-NHEJ), which did not generate fragile telomeres. Collectively, these findings indicate that fragile telomeres can arise from BIR-mediated repair of telomeric DSBs.


Assuntos
Sítios Frágeis do Cromossomo/genética , Quebras de DNA de Cadeia Dupla , Replicação do DNA , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/patologia , Animais , Linhagem Celular , Células Cultivadas , Reparo do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Fibroblastos , Humanos , Camundongos , Recombinases/genética , Recombinases/metabolismo
20.
Mol Cell ; 73(2): 238-249.e3, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30554944

RESUMO

The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.


Assuntos
Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina/métodos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nuclease do Micrococo/metabolismo , Nucleossomos/enzimologia , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Conformação de Ácido Nucleico , Nucleossomos/genética , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA