RESUMO
Stream salinization is a global issue, yet few models can provide reliable salinity estimates for unmonitored locations at the time scales required for ecological exposure assessments. Machine learning approaches are presented that use spatially limited high-frequency monitoring and spatially distributed discrete samples to estimate the daily stream-specific conductance across a watershed. We compare the predictive performance of space- and time-unaware Random Forest models and space- and time-aware Recurrent Graph Convolution Neural Network models (KGE: 0.67 and 0.64, respectively) and use explainable artificial intelligence methods to interpret model predictions and understand salinization drivers. These models are applied to the Delaware River Basin, a developed watershed with diverse land uses that experiences anthropogenic salinization from winter deicer applications. These models capture seasonality for the winter first flush of deicers, and the streams with elevated predictions correspond well with indicators of deicer application. This result suggests that these models can be used to identify potential salinity-impaired streams for winter best management practices. Daily salinity predictions are driven primarily by land cover (urbanization) trends that may represent anthropogenic salinization processes and weather at time scales up to three months. Such modeling approaches are likely transferable to other watersheds and can be applied to further understand salinization risks and drivers.
Assuntos
Aprendizado de Máquina , Rios , Salinidade , Rios/química , Monitoramento Ambiental/métodos , Estações do Ano , Redes Neurais de ComputaçãoRESUMO
Impervious surface cover increases peak flows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-floodplain reconnection, dissipate erosive forces from urban runoff, and enhance contaminant retention, but it is not always clear how effective such practices are or how to monitor for their effectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream flowpaths across both space and time) to narrow this knowledge gap. Specifically, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal flowpaths in response to stream-floodplain reconnection and (2) what is the scale over which restoration efforts improve stream quality. We present results for four different classes of water quality constituents (carbon, nutrients, salt ions, and metals) across five watersheds with varying degrees of stream-floodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams flow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p < 0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) significantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we find that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm events.
Assuntos
Rios , Sais , Qualidade da Água , Monitoramento Ambiental , Carbono , Cloreto de SódioRESUMO
Freshwater salinity is rising across many regions of the United States as well as globally, a phenomenon called the freshwater salinization syndrome (FSS). The FSS mobilizes organic carbon, nutrients, heavy metals, and other contaminants sequestered in soils and freshwater sediments, alters the structures and functions of soils, streams, and riparian ecosystems, threatens drinking water supplies, and undermines progress toward many of the United Nations Sustainable Development Goals. There is an urgent need to leverage the current understanding of salinization's causes and consequencesâin partnership with engineers, social scientists, policymakers, and other stakeholdersâinto locally tailored approaches for balancing our nation's salt budget. In this feature, we propose that the FSS can be understood as a common pool resource problem and explore Nobel Laureate Elinor Ostrom's social-ecological systems framework as an approach for identifying the conditions under which local actors may work collectively to manage the FSS in the absence of top-down regulatory controls. We adopt as a case study rising sodium concentrations in the Occoquan Reservoir, a critical water supply for up to one million residents in Northern Virginia (USA), to illustrate emerging impacts, underlying causes, possible solutions, and critical research needs.
Assuntos
Água Potável , Ecossistema , Carbono , Água Doce/química , Sódio , Solo , Estados UnidosRESUMO
Much scientific research dedicated to understanding the effects of freshwater salinization caused by road de-icing salts has utilized static exposures, with many tests conducted at winter or spring temperatures. While relevant for lentic ecosystems, pulsed patterns of salinity occur in lotic environments, particularly in summer months where precipitation can decrease elevated salinity levels caused by retention of residual salts. The current study aimed to evaluate the effects of pulsed patterns of salinity on the emergence, sex ratio, and fecundity of Chironomus dilutus over two generations of laboratory exposure. Three road de-icing salt treatments, including a control, modeled after environmental monitoring data of two local streams, were used to determine the ecological effects of periodic declines in salinity on C. dilutus at summer temperatures. No significant effects were observed on emergence success or sex ratios within or across generations, but fecundity of C. dilutus in the high salt treatment was reduced regardless of generation (P < 2e-16), possibly due to increased osmoregulatory stress caused by increased salinities. The intermediate and decreasing salinities may account for the lack of negative effects on emergence success and sex ratios by protecting sensitive life stages. More research is needed on long-term effects of reduced fecundity on population viability. The current study suggests more research using a similar experimental design is needed to fully evaluate the influence of road de-icing salts in lotic environments, as static laboratory exposures may not accurately reflect environmental changes in salinity.
Assuntos
Chironomidae , Diapausa , Poluentes Químicos da Água , Animais , Ecossistema , Fertilidade , Água Doce , Rios , Salinidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
PREMISE: Outcomes of species interactions, especially mutualisms, are notoriously dependent on environmental context, and environments are changing rapidly. Studies have investigated how mutualisms respond to or ameliorate anthropogenic environmental changes, but most have focused on nutrient pollution or climate change and tested stressors one at a time. Relatively little is known about how mutualisms may be altered by or buffer the effects of multiple chemical contaminants, which differ fundamentally from nutrient or climate stressors and are especially widespread in aquatic habitats. METHODS: We investigated the impacts of two contaminants on interactions between the duckweed Lemna minor and its microbiome. Sodium chloride (salt) and benzotriazole (a corrosion inhibitor) often co-occur in runoff to water bodies where duckweeds reside. We tested three L. minor genotypes with and without the culturable portion of their microbiome across field-realistic gradients of salt (3 levels) and benzotriazole (4 levels) in a fully factorial experiment (24 treatments, tested on each genotype) and measured plant and microbial growth. RESULTS: Stressors had conditional effects. Salt decreased both plant and microbial growth and decreased plant survival more as benzotriazole concentrations increased. In contrast, benzotriazole did not affect microbial abundance and even benefited plants when salt and microbes were absent, perhaps due to biotransformation into growth-promoting compounds. Microbes did not ameliorate duckweed stressors; microbial inoculation increased plant growth, but not at high salt concentrations. CONCLUSIONS: Our results suggest that multiple stressors matter when predicting responses of mutualisms to global change and that beneficial microbes may not always buffer hosts against stress.
Assuntos
Araceae , Microbiota , Desenvolvimento Vegetal , Cloreto de SódioRESUMO
Urbanization contributes to the formation of novel elemental combinations and signatures in terrestrial and aquatic watersheds, also known as 'chemical cocktails.' The composition of chemical cocktails evolves across space and time due to: (1) elevated concentrations from anthropogenic sources, (2) accelerated weathering and corrosion of the built environment, (3) increased drainage density and intensification of urban water conveyance systems, and (4) enhanced rates of geochemical transformations due to changes in temperature, ionic strength, pH, and redox potentials. Characterizing chemical cocktails and underlying geochemical processes is necessary for: (1) tracking pollution sources using complex chemical mixtures instead of individual elements or compounds; (2) developing new strategies for co-managing groups of contaminants; (3) identifying proxies for predicting transport of chemical mixtures using continuous sensor data; and (4) determining whether interactive effects of chemical cocktails produce ecosystem-scale impacts greater than the sum of individual chemical stressors. First, we discuss some unique urban geochemical processes which form chemical cocktails, such as urban soil formation, human-accelerated weathering, urban acidification-alkalinization, and freshwater salinization syndrome. Second, we review and synthesize global patterns in concentrations of major ions, carbon and nutrients, and trace elements in urban streams across different world regions and make comparisons with reference conditions. In addition to our global analysis, we highlight examples from some watersheds in the Baltimore-Washington DC region, which show increased transport of major ions, trace metals, and nutrients across streams draining a well-defined land-use gradient. Urbanization increased the concentrations of multiple major and trace elements in streams draining human-dominated watersheds compared to reference conditions. Chemical cocktails of major and trace elements were formed over diurnal cycles coinciding with changes in streamflow, dissolved oxygen, pH, and other variables measured by high-frequency sensors. Some chemical cocktails of major and trace elements were also significantly related to specific conductance (p<0.05), which can be measured by sensors. Concentrations of major and trace elements increased, peaked, or decreased longitudinally along streams as watershed urbanization increased, which is consistent with distinct shifts in chemical mixtures upstream and downstream of other major cities in the world. Our global analysis of urban streams shows that concentrations of multiple elements along the Periodic Table significantly increase when compared with reference conditions. Furthermore, similar biogeochemical patterns and processes can be grouped among distinct mixtures of elements of major ions, dissolved organic matter, nutrients, and trace elements as chemical cocktails. Chemical cocktails form in urban waters over diurnal cycles, decades, and throughout drainage basins. We conclude our global review and synthesis by proposing strategies for monitoring and managing chemical cocktails using source control, ecosystem restoration, and green infrastructure. We discuss future research directions applying the watershed chemical cocktail approach to diagnose and manage environmental problems. Ultimately, a chemical cocktail approach targeting sources, transport, and transformations of different and distinct elemental combinations is necessary to more holistically monitor and manage the emerging impacts of chemical mixtures in the world's fresh waters.
RESUMO
In regions where deicers are applied to roadways, micronutrients and toxic trace elements may be mobilized from soil material into soil porewater. These elements may subsequently migrate with soil porewater to surface waters and groundwaters, potentially leaching the soil of micronutrients or introducing toxins to water resources. Our study thus aims to quantify the timing and extent of trace element releases from soil material to soil porewater and groundwater in response to deicing events. We sampled soil porewater near a road at a rural site for trace elements and compared the results to salt applications and soil porewater Na and Cl levels. We also assessed trace element, Na, and Cl concentrations in a karst spring at the rural site and a karst spring at an urban site to evaluate the role of land use in conveying these contaminants to groundwater. We found that certain trace elements (e.g., As, Ba, Fe, Sr) peaked concomitantly with Na and Cl in soil porewater at the rural site after road deicing events, suggesting their release due to excess salt inputs to the soil. We did not observe increases in trace element concentrations at the rural karst spring following individual road salt applications, likely due to low deicer inputs and trace element levels across its recharge basin. However, at the urban site, we observed that other assemblages of trace elements (e.g., As, Cu, Li) in the karst spring peaked with deicing-related Na and Cl pulses. We also found positive and significant correlations between salt applications to the recharge basin and exports of some trace elements (e.g., As, Cu, Li, Se) at the urban karst spring, indicating deicing events triggered trace element releases to groundwater. Overall, we detected road salt-driven trace element release from soil material to soil porewater and groundwater that was exacerbated by urbanization.
RESUMO
Salting of roadways contaminates local waterways via snowmelt and precipitation runoff, eliciting various toxicological impacts on aquatic ecosystems. Recently, "eco-friendly" deicing alternatives have been introduced in hopes of mitigating environmental impacts of deicing agents, while maintaining human safety. These "eco-friendly" alternatives may pose their own set of environmental concerns that require further study. While the potential toxicity of road salts has been evaluated for various aquatic species, the environmental factors that may influence this toxicity are less understood; and for emerging deicing alternatives, there is a lack of literature documenting these potential implications. For aquatic organisms, the highest exposure to road salts may coincide with reduced food availability, namely during the winter months. The present study evaluates the effect of a conditioning diet on the sensitivity of adult Hyalella azteca to an "eco-friendly"-labeled beet deicer (Snow Joe MELT Beet-IT). Various conditioning diets were examined, including TetraMinTM, TetraMin and diatom (Thalassiosira weissflogii) combinations, and TetraMin and conditioned Acer sacharum leaves. For each diet type, 48- and 96-h water-only toxicity bioassays were conducted with adult H. azteca. These results were compared to organisms which experienced a 96-h starvation period prior to exposure and culture organisms. Diet types representing excess quality and quantity of food significantly decreased the toxicity of beet deicer to the organisms. However, starvation likely increases the toxicity of road salts to H. azteca. Therefore, the quantity and quality of food available to H. azteca may influence their sensitivity to deicing agents. Environ Toxicol Chem 2024;00:1-8. © 2024 SETAC.
RESUMO
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Assuntos
Mineração , Rios , Salinidade , Transcriptoma , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Rios/química , Espanha , Cyprinidae/genética , Cyprinidae/fisiologia , Água Doce , Monitoramento Ambiental/métodos , Brânquias/metabolismoRESUMO
Increasing salinity is a concern for biodiversity in many freshwater ecosystems globally. Single species laboratory toxicity tests show major differences in freshwater organism survival depending on the specific ions that comprise salinity types and/or their ion ratios. Toxicity has been shown to be reduced by altering ionic composition, despite increasing (total) salinity. For insistence, single species tests show the toxicity of sodium bicarbonate (NaHCO3, which commonly is a large proportion of the salts from coalbeds) to freshwater invertebrates is reduced by adding magnesium (Mg2+) or chloride (Cl-). However, it is uncertain whether reductions in mortality observed in single-species laboratory tests predict effects within populations, communities and to ecosystem processes in more complex multi-species systems both natural and semi-natural. Here we report the results of an outdoor multi-species mesocosm experiment to determine if the effects of NaHCO3 are reduced by increasing the concentrations of Mg2+ or Cl- on: a) stream macroinvertebrate populations and communities; b) benthic chlorophyll-a and; c) the ecosystem process of leaf litter decomposition. We found a large effect of a high NaHCO3 concentration (≈4.45 mS/cm) with reduced abundances of multiple taxa, reduced emergence of adult insects and reduced species richness, altered community structure and increased leaf litter breakdown rates but no effect on benthic chlorophyll-a. However, despite predictions based on laboratory findings, we found no evidence that the addition of either Mg2+ or Cl- altered the effect of NaHCO3. In semi-natural environments such as mesocosms, and natural environments, organisms are subject to varying temperature and habitat factors, while also interacting with other species and trophic levels (e.g. predation, competition, facilitation), which are absent in single species laboratory tests. Thus, it should not be assumed single-species tests are good predictors of the effects of changing ionic compositions on stream biota in more natural environments.
Assuntos
Cloretos , Ecossistema , Animais , Bicarbonatos , Cloretos/toxicidade , Clorofila , Clorofila A , Invertebrados , Magnésio , Rios/química , Bicarbonato de Sódio/farmacologiaRESUMO
The increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to the water chemistry of their natal environment, toxicity responses may also vary among populations in a given test medium. We examined the potential for this evolutionary and environmental context to interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua collected from three lakes that vary in ion availability and composition. We observed a strong effect of the lake water environment on NaCl toxicity in both trials. NaCl caused a much greater decline in reproduction and r in lake water from a low-ion/calcium-poor environment (20 µS/cm specific conductance; 1.7 mg/L Ca2+) compared with water from both a Ca2+-rich lake (55 µS/cm; 7.2 mg/L Ca2+) and an ion-rich coastal lake (420 µS/cm; 3.4 mg/L Ca2+). Daphnia from this coastal lake were most robust to the effects of NaCl on reproduction and r. A significant interaction between the population and lake water environment shaped survival in both trials, suggesting that local adaptation to the test waters used may have contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a contaminant of interest may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.
RESUMO
Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
Assuntos
Cianobactérias , Áreas Alagadas , Poluentes Químicos da Água/análise , Água Doce/química , Monitoramento Ambiental , Cloreto de Sódio , Salinidade , Fitoplâncton/efeitos dos fármacosRESUMO
The freshwater salinization syndrome (FSS), a concomitant watershed-scale increase in salinity, alkalinity, and major-cation and trace-metal concentrations, over recent decades, has been described for major rivers draining extensive urban areas, yet few studies have evaluated temporal and spatial FSS variations, or causal factors, at the subwatershed scale in mixed-use landscapes. This study examines the potential influence of land-use practices and wastewater treatment plant (WWTP) effluent on the export of major ions and trace metals from the mixed-use East Branch Brandywine Creek watershed in southeastern Pennsylvania, during the 2019 water year. Separate analysis of baseflow and stormflow subsets revealed similar correlations among land-use characteristics and streamwater chemistry. Positive associations between percent impervious surface cover, which ranged from 1.26 % to 21.9 % for the 13 sites sampled, and concentrations of Ca2+, Mg2+, Na+, and Cl- are consistent with road-salt driven reverse cation exchange and weathering of the built environment. The relative volume of upstream WWTP was correlated with Cu and Zn, which may be derived in part from corroded water-conveyance infrastructure; chloride to sulfate mass ratios (CSMR) ranged from ~6.3 to ~7.7× the 0.5 threshold indicating serious corrosivity potential. Observed exceedances of U.S. Environmental Protection Agency Na+ and Cl- drinking water and aquatic life criteria occurred in winter months. Finally, correlations between percent cultivated cropland and As and Pb concentrations may be explained by the persistence of agricultural pesticides that had been used historically. Study results contribute to the understanding of FSS solute origin, fate, and transport in mixed-use watersheds, particularly those in road salt-affected regions. Study results also emphasize the complexity of trace-metal source attribution and explore the potential for FSS solutes to affect human health, aquatic life, and infrastructure.
Assuntos
Monitoramento Ambiental , Salinidade , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Pennsylvania , Rios/química , Água Doce/químicaRESUMO
Produced water from conventional oil and gas wells (O&G PW) is beneficially reused as an inexpensive alternative to commercial dust suppressants which minimize inhalable particulate matter (PM10) from unpaved roads. The efficacy and environmental impacts of using O&G PW instead of commercial products have not been extensively investigated, although O&G PW has been used for dust suppression for decades and often has elevated concentrations of environmental pollutants. In this study, the effectiveness of O&G PW is compared to commercial products under variable humidity conditions by measuring total generated PM10 emissions from treated road aggregate discs. To measure environmental impacts, model roadbeds were treated with six O&G PW and commercial products then subjected to a simulated two-year, 24-h storm event. Generated runoff water was collected and characterized. In efficacy studies, O&G PW offered variable dust reduction (10-85 %) compared to rainwater controls under high humidity (50 %) conditions but performed similarly or worse than controls when humidity was low (20 %). Conversely, all but two commercial products reduced dust emissions by over 90 % regardless of humidity. In rainfall-runoff experiments, roads treated with O&G PWs and CaCl2 Brine generated runoff that was hypersaline, indicating that mobilization of soluble salts could contribute to freshwater salinization. Though most runoff concentrations were highest from roadbeds treated with CaCl2 Brine, runoff from roadbeds treated with O&G PW had the highest concentrations of combined radium (83.6 pCi/L), sodium (3560 mg/L), and suspended solids (5330 mg/L). High sodium concentrations likely dispersed clay particles, which increased road mass loss by 47.2 kg solids/km/storm event compared to rainwater controls. Roadbeds treated with CaCl2 Brine, which had low sodium concentrations, reduced solid road mass loss by 98.1 kg solids/km/storm event. Based on this study, O&G PW do not perform as well as commercial products and pose unique risks to environmental health.
RESUMO
Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.
Assuntos
Daphnia , Água Doce , Trealose , Animais , Trealose/metabolismo , Daphnia/fisiologia , Daphnia/genética , Tolerância ao Sal/genética , Salinidade , Estudo de Associação Genômica Ampla , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Estresse SalinoRESUMO
Freshwater salinization, due to road salt and other increased anthropogenic activities, has become a significant threat to freshwater organisms. However, whether freshwater salinization affects the response of aquatic organisms to their predators, especially prey that have been acclimated to salinity environments for a long time, remains unclear. In the present study, we investigated the changes in anti-predator defense of Daphnia magna with and without salinity acclimation at five different salinities (0, 0.6, 0.8, 0.10, and 0.12 M). Results showed that freshwater salinization weakened the induced defense response of D. magna, regardless of whether it had undergone long-term salinity acclimation. Specifically, induced defense traits such as smaller body size, higher relative spine length, more relative reproductive output, and smaller body size neonates disappeared at ≥ 0.08 M salinities. In addition, there were no significant differences in most traits of induced defense strength between D. magna with and without salinity acclimation at the same salinity. Importantly, the integrated induced defense response index decreased with increasing salinity. Our study showed that salinity-tolerant organisms do not recover their induced defense at high salinities, underlining the importance of incorporating interspecific interactions when estimating the effects of freshwater salinization on organisms.
Assuntos
Daphnia , Salinidade , Animais , Aclimatação , Cloreto de Sódio/farmacologia , Água Doce , Organismos AquáticosRESUMO
Land use change threatens aquatic ecosystems through freshwater salinization and sediment pollution. Effective river management requires an understanding of the dominant hydrologic pathways of sediment and solute delivery. To address this, we applied hysteresis analysis, hydrograph separation, and linear regression to hundreds of events across a decade of specific conductance and turbidity data from three streams along a rural-to-urban gradient. Thereafter, we developed an index (ßrunoff') to quantify the relative influence of surface runoff to event-scale suspended sediment generation, where a value of '1' indicates complete alignment of suspended sediment generation with the temporal structure of runoff whereas '0' indicates total alignment with baseflow. Solute hysteresis results showed a predominance of dilution for the rural and mixed-use streams irrespective of road salt presence. On the other hand, urban stream behavior shifted from dilution to flushing following salt application, which was largely driven by greater runoff coefficients and the connectivity of distal solutes to the stream corridor. The newly developed index (ßrunoff') indicated that suspended sediment dynamics were more aligned with runoff in all three streams: rural stream (ßrunoff' = 0.70), mixed stream (ßrunoff' = 0.57), and urban stream (ßrunoff' = 0.64). The relative importance of baseflow to sediment generation grows slightly in urbanizing streams, as impervious surfaces disconnect upland sediment, which would otherwise transport with runoff, while piston-flow baseflow erodes exposed streambanks. Our findings emphasize the need to consider the impact of human modification of the landscape on solute and sediment transport in freshwater systems for effective water quality management. Further, our ßrunoff' index provides a useful tool for assessing the relative influence of surface runoff on event-scale solute or sediment generation in streams, supporting river management and conservation efforts.
RESUMO
Driven by anthropogenic activities, freshwater salinization has become an emerging global environmental issue. Recent studies indicate that salinization increases the mobility of heavy metals in soil and causes higher flux into surface waterbodies. The present study assessed the combined effects of salinization (0, 3, 6 PSU) and the heavy metal Cd2+ (0, 0.2, 0.4 mg L-1) on the anti-grazing colony formation and population growth of Scenedesmus obliquus, a common freshwater alga. The results showed that the increase in salinity promoted colony formation of S. obliquus with or without the presence of grazing cues and, in contrast, Cd2+ contamination depressed the defensive colony formation of S. obliquus to Daphnia filtrate. The increase in both salinity and Cd2+ concentration depressed the population growth of S. obliquus, including impaired photosynthesis and a decreased population growth rate. Salinization moderated the negative effects of Cd2+ on defensive colony formation of S. obliquus, suggesting increased absorption of Cd2+ ions by a thicker outer layer of the algal cell wall under saltier conditions. As a result, larger defensive colonies of S. obliquus under freshwater salinization may cause higher bioaccumulation of heavy metals by algal cells and heavier influence on zooplankton. This study provides evidence that freshwater salinization could interfere with plankton interactions by affecting algal defense and growth, which may lead to bottom-up cascading effects on freshwater food webs.
Assuntos
Cádmio , Scenedesmus , Animais , Cádmio/toxicidade , Fotossíntese , Daphnia , ZooplânctonRESUMO
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed "chemical cocktails", in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e., permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g., Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.
RESUMO
Organisms that rely on aquatic habitats in roaded landscapes face a growing array of consequences from pollution, especially due to freshwater salinization. Critically, these consequences can vary from population to population depending on exposure histories and evolutionary responses. Prior studies using transplant and common garden experiments have found that aquatic-stage wood frogs (Rana sylvatica) from roadside populations are less fit in the wild and more sensitive to road salt than their counterparts from woodland populations away from roads. While this pattern is consistent with local maladaptation, unresolved insights into the timing and duration of these effects leave open the possibility that negative outcomes are countered during development. Here, we asked whether the survival disadvantage of roadside wood frogs is stage-specific, and whether this disadvantage reverses before metamorphosis. We used a common garden road salt exposure experiment and a field-based reciprocal transplant experiment to examine differences in survival across life-history stage and with respect to population type. In each experimental context, roadside embryos showed a survival disadvantage relative to woodland embryos, and this disadvantage was not reversed prior to metamorphosis. We also found that salt exposure delayed metamorphosis more strongly for roadside than woodland populations. Together, these results suggest that local maladaptation in aquatic-stage wood frogs is driven by embryonic sensitivity to salt and that roadside populations are further compromised by delayed developmental rates. Future studies should consider which embryonic traits fail to adapt to salt toxicity, and how those traits might correlate with terrestrial trait variation.