Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(9): 2379-2394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623687

RESUMO

Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.


Assuntos
Frutas , Estudo de Associação Genômica Ampla , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Edição de Genes , Sistemas CRISPR-Cas
2.
BMC Genomics ; 22(1): 297, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892636

RESUMO

BACKGROUND: Paeonia ostii is a potentially important oilseed crop because its seed yield is high, and the seeds are rich in α-linolenic acid (ALA). However, the molecular mechanisms underlying ALA biosynthesis during seed kernel, seed testa, and fruit pericarp development in this plant are unclear. We used transcriptome data to address this knowledge gap. RESULTS: Gas chromatograph-mass spectrometry indicated that ALA content was highest in the kernel, moderate in the testa, and lowest in the pericarp. Therefore, we used RNA-sequencing to compare ALA synthesis among these three tissues. We identified 227,837 unigenes, with an average length of 755 bp. Of these, 1371 unigenes were associated with lipid metabolism. The fatty acid (FA) biosynthesis and metabolism pathways were significantly enriched during the early stages of oil accumulation in the kernel. ALA biosynthesis was significantly enriched in parallel with increasing ALA content in the testa, but these metabolic pathways were not significantly enriched during pericarp development. By comparing unigene transcription profiles with patterns of ALA accumulation, specific unigenes encoding crucial enzymes and transcription factors (TFs) involved in de novo FA biosynthesis and oil accumulation were identified. Specifically, the bell-shaped expression patterns of genes encoding SAD, FAD2, FAD3, PDCT, PDAT, OLE, CLE, and SLE in the kernel were similar to the patterns of ALA accumulation in this tissue. Genes encoding BCCP, BC, KAS I- III, and FATA were also upregulated during the early stages of oil accumulation in the kernel. In the testa, the upregulation of the genes encoding SAD, FAD2, and FAD3 was followed by a sharp increase in the concentrations of ALA. In contrast, these genes were minimally expressed (and ALA content was low) throughout pericarp development. CONCLUSIONS: We used three tissues with high, moderate, and low ALA concentrations as an exemplar system in which to investigate tissue-specific ALA accumulation mechanisms in P. ostii. The genes and TFs identified herein might be useful targets for future studies of ALA accumulation in the tree peony. This study also provides a framework for future studies of FA biosynthesis in other oilseed plants.


Assuntos
Paeonia , Ácido alfa-Linolênico , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Paeonia/genética , Paeonia/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo , Transcriptoma
3.
J Theor Biol ; 349: 32-43, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24486251

RESUMO

In many developing plant tissues and organs, differentiating cells switch from the classical cell cycle to an alternative partial cycle. This partial cycle bypasses mitosis and allows for multiple rounds of genome duplication without cell division, giving rise to cells with high ploidy numbers. This partial cycle is referred to as endoreduplication. Cell division and endoreduplication are important processes for biomass allocation and yield in tomato. Quantitative trait loci for tomato fruit size or weight are frequently associated with variations in the pericarp cell number, and due to the tight connection between endoreduplication and cell expansion and the prevalence of polyploidy in storage tissues, a functional correlation between nuclear ploidy number and cell growth has also been implicated (karyoplasmic ratio theory). In this paper, we assess the applicability of putative mechanisms for the onset of endoreduplication in tomato pericarp cells via development of a mathematical model for the cell cycle gene regulatory network. We focus on targets for regulation of the transition to endoreduplication by the phytohormone auxin, which is known to play a vital role in the onset of cell expansion and differentiation in developing tomato fruit. We show that several putative mechanisms are capable of inducing the onset of endoreduplication. This redundancy in explanatory mechanisms is explained by analysing system behaviour as a function of their combined action. Namely, when all these routes to endoreduplication are used in a combined fashion, robustness of the regulation of the transition to endoreduplication is greatly improved.


Assuntos
Divisão Celular , Endorreduplicação , Frutas/citologia , Solanum lycopersicum/citologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Fatores de Transcrição E2F/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Modelos Biológicos
4.
Plant Physiol Biochem ; 207: 108394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38295527

RESUMO

To interpret the final steps of chlorophyll biosynthesis, detailed knowledge of etiolation symptoms is necessary. Most of our knowledge originates from studies on plant materials grown in complete darkness. Hardly any information is available about the plastid development in internal parenchyma cells of fleshy fruits in which the food supply is almost unlimited. In this work, etiolation symptoms were studied in pericarp layers of purple eggplant (Solanum melongena L.). Tissue layers of fruits developed under open-air conditions and of etiolated fruits were dissected in a dark room. Transmission and 77 K fluorescence spectroscopy and ultrastructural studies were performed. Photosynthetic activities were measured and pigment contents were determined in light-grown fruits. The purple exocarp and a 1-1.5 cm wide green mesocarp layer of large fruits fully shade the internal pericarp layers, thus protochloropyll (ide) accumulated, flash-photoactive 644 and 655 nm emitting protochlorophyllide complexes, and only small amounts of chlorophylls were found. Photosynthetic activity was detected only in the external, green layer, which had fully developed chloroplasts, and showed 77 K fluorescence emission spectra characteristic for green leaves. The innermost endocarp regions and the etiolated fruits contained mainly protochlorophyll (ide), proplastids, and etioplasts, i.e. they showed etiolation symptoms. These symptoms correspond to those of leaves of dark-grown seedlings but are stable for long periods due to the almost unlimited nourishment supply from storage parenchyma cells. These results prove that the laboratory works with artificially dark-developed plant materials are good models of natural chlorophyll biosynthesis and plastid development.


Assuntos
Solanum melongena , Luz , Clorofila , Fotossíntese , Folhas de Planta
5.
Proteomics ; 13(20): 3059-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23929585

RESUMO

Tomato (Solanum lycopersicum) is the model species for studying fleshy fruit development. An extensive proteome map of the fruit pericarp is described in light of the high-quality genome sequence. The proteomes of fruit pericarp from 12 tomato genotypes at two developmental stages (cell expansion and orange-red) were analyzed. The 2DE reference map included 506 spots identified by nano-LC/MS and the International Tomato Annotation Group Database searching. A total of 425 spots corresponded to unique proteins. Thirty-four spots resulted from the transcription of genes belonging to multigene families involving two to six genes. A total of 47 spots corresponded to a mixture of different proteins. The whole protein set was classified according to Gene Ontology annotation. The quantitative protein variation was analyzed in relation to genotype and developmental stage. This tomato fruit proteome dataset is currently the largest available and constitutes a valuable tool for comparative genetic studies of tomato genome expression at the protein level. All MS data have been deposited in the ProteomeXchange with identifier PXD000105.


Assuntos
Frutas/anatomia & histologia , Frutas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/metabolismo , Ontologia Genética , Espectrometria de Massas , Proteínas de Plantas/metabolismo , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA