Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007275

RESUMO

N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark that regulates the fate of RNA molecules. Recent studies have revealed a bidirectional interaction between m6A modification and the circadian clock. However, the precise temporal dynamics of m6A global enrichment in the central circadian pacemaker have not been fully elucidated. Our study investigates the relationship between FTO demethylase and molecular clocks in primary cells of the suprachiasmatic nucleus (SCN). In addition, we examined the effects of lipopolysaccharide (LPS) on Fto expression and the role of FTO in LPS-induced reactive oxygen species (ROS) production in primary SCN cell culture. We observed circadian rhythmicity in the global m6A levels, which mirrored the rhythmic expression of the Fto demethylase. Silencing FTO using siRNA reduced the mesor of Per2 rhythmicity in SCN primary cells and extended the period of the PER2 rhythm in SCN primary cell cultures from PER2::LUC mice. When examining the immune response, we discovered that exposure to LPS upregulated global m6A levels while downregulating Fto expression in SCN primary cell cultures. Interestingly, we found a loss of circadian rhythmicity in Fto expression following LPS treatment, indicating that the decrease of FTO levels may contribute to m6A upregulation without directly regulating its circadian rhythm. To explore potential protective mechanisms against neurotoxic inflammation, we examined ROS production following LPS treatment in SCN primary cell cultures pretreated with FTO siRNA. We observed a time-dependent pattern of ROS induction, with significant peak at 32 h but not at 20 h after synchronization. Silencing the FTO demethylase abolished ROS induction following LPS exposure, supporting the hypothesis that FTO downregulation serves as a protective mechanism during LPS-induced neuroinflammation in SCN primary cell cultures.

2.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 114-128, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38151999

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer, and its mechanisms of occurrence and development remain unclear. In this study, we aim to investigate the role and molecular mechanisms of the demethylase FTO (fat mass and obesity-associated protein) in TNBC. Through analysis of public databases, we identify that FTO may regulate the maturation of miR-17-5p and subsequently influence the expression of zinc finger and BTB domain-containing protein 4 (ZBTB4), thereby affecting the occurrence and progression of TNBC. We screen for relevant miRNAs and mRNAs from the GEO and TCGA databases and find that the FTO gene may play a crucial role in TNBC. In vitro cell experiments demonstrate that overexpression of FTO can suppress the proliferation, migration, and invasion ability of TNBC cells and can regulate the maturation of miR-17-5p through an m 6A-dependent mechanism. Furthermore, we establish a xenograft nude mouse model and collect clinical samples to further confirm the role and impact of the FTO/miR-17-5p/ZBTB4 regulatory axis in TNBC. Our findings unveil the potential role of FTO and its underlying molecular mechanisms in TNBC, providing new perspectives and strategies for the research and treatment of TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Repressoras/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
3.
Anal Chim Acta ; 1247: 340902, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36781254

RESUMO

The demethylase of fat mass and obesity related protein (FTO) is critical to regulate the dynamic N6-methyladenosine (m6A) modification of eukaryotic mRNAs, and its overexpression has found to be closely related to the initiation of several cancers. On the basis of a target-promoted specific activation of DNAzyme strategy coupled with self-primer exponential amplification reaction (SPEXPAR) cycles and DNA supersandwich assemblies, the highly sensitive and label-free electrochemical FTO assay approach is established. The modification of the catalytic core nucleobase of the DNAzyme probe by m6A can inhibit its cleavage activity. The presence of target FTO catalyzes the elimination of the methyl group to restore the DNAzyme activity, which cleaves the hairpin substrates to trigger the SPEXPAR for yielding many ssDNAs. The capture of these DNAs on the sensor electrode leads to the initiation of supersandwich assembly formation of long dsDNAs. Tremendous electrochemical signal probe of [Ru(NH3)6]Cl3 are then absorbed on these dsDNAs to produce highly amplified catalytic currents with the assistance of K3[Fe(CN)6] for detecting trace FTO with 63.1 fM detection limit. Furthermore, the sensor can be employed for selective assay of FTO in cell lysates, revealing the great potential of this sensing strategy for biomedical and biological study applications.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/genética , DNA/genética , DNA de Cadeia Simples , Catálise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA