Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Cell ; 184(3): 628-642.e10, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476549

RESUMO

SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , Troca Materno-Fetal/imunologia , Placenta/imunologia , Complicações Infecciosas na Gravidez/imunologia , SARS-CoV-2/imunologia , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Terceiro Trimestre da Gravidez/imunologia , Receptores de IgG/imunologia , Células THP-1
2.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636132

RESUMO

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Assuntos
Aminoácidos/metabolismo , Linfócitos T CD8-Positivos/citologia , Memória Imunológica , Transdução de Sinais , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas , Ciclo Celular , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Precursoras de Linfócitos T/citologia
3.
Mol Cell Proteomics ; 23(2): 100717, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237698

RESUMO

Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.


Assuntos
Proteoma , Trombina , Proteoma/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Glicosilação , Plaquetas/metabolismo , Ativação Plaquetária
4.
Mol Cell Proteomics ; 23(2): 100711, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182041

RESUMO

Glycans are key to host-pathogen interactions, whereby recognition by the host and immunomodulation by the pathogen can be mediated by carbohydrate binding proteins, such as lectins of the innate immune system, and their glycoconjugate ligands. Previous studies have shown that excretory-secretory products of the porcine nematode parasite Trichuris suis exert immunomodulatory effects in a glycan-dependent manner. To better understand the mechanisms of these interactions, we prepared N-glycans from T. suis and both analyzed their structures and used them to generate a natural glycan microarray. With this array, we explored the interactions of glycans with C-type lectins, C-reactive protein, and sera from T. suis-infected pigs. Glycans containing LacdiNAc and phosphorylcholine-modified glycans were associated with the highest binding by most of these proteins. In-depth analysis revealed not only fucosylated LacdiNAc motifs with and without phosphorylcholine moieties but phosphorylcholine-modified mannose and N-acetylhexosamine-substituted fucose residues, in the context of maximally tetraantennary N-glycan scaffolds. Furthermore, O-glycans also contained fucosylated motifs. In summary, the glycans of T. suis are recognized by both the innate and adaptive immune systems and also exhibit species-specific features distinguishing its glycome from those of other nematodes.


Assuntos
Fosforilcolina , Trichuris , Animais , Suínos , Trichuris/química , Trichuris/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Sistema Imunitário/metabolismo
5.
J Biol Chem ; 300(8): 107501, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944119

RESUMO

L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically. However, its molecular identity remained elusive until recently. This study reports the purification, identification, and biochemical characterization of the mammalian L-fucose dehydrogenase. The enzyme was purified from rabbit liver approximately 340-fold. Mass spectrometry analysis of the purified protein preparation identified mammalian hydroxysteroid 17-ß dehydrogenase 14 (HSD17B14) as the sole candidate enzyme. Rabbit and human HSD17B14 were expressed in HEK293T and Escherichia coli, respectively, purified, and demonstrated to catalyze the oxidation of L-fucose to L-fucono-1,5-lactone, as confirmed by mass spectrometry and NMR analysis. Substrate specificity studies revealed that L-fucose is the preferred substrate for both enzymes. The human enzyme exhibited a catalytic efficiency for L-fucose that was 359-fold higher than its efficiency for estradiol. Additionally, recombinant rat HSD17B14 exhibited negligible activity towards L-fucose, consistent with the absence of L-fucose metabolism in this species. The identification of the gene-encoding mammalian L-fucose dehydrogenase provides novel insights into the substrate specificity of enzymes belonging to the 17-ß-hydroxysteroid dehydrogenase family. This discovery also paves the way for unraveling the physiological functions of the L-fucose degradation pathway, which remains enigmatic.

6.
J Biol Chem ; 300(8): 107558, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002669

RESUMO

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.

7.
J Biol Chem ; 300(7): 107471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879010

RESUMO

Most proteins in the secretory pathway are glycosylated, and N-glycans are estimated to be attached to over 7000 proteins in humans. As structural variation of N-glycans critically regulates the functions of a particular glycoprotein, it is pivotal to understand how structural diversity of N-glycans is generated in cells. One of the major factors conferring structural variation of N-glycans is the variable number of N-acetylglucosamine branches. These branch structures are biosynthesized by dedicated glycosyltransferases, including GnT-III (MGAT3), GnT-IVa (MGAT4A), GnT-IVb (MGAT4B), GnT-V (MGAT5), and GnT-IX (GnT-Vb, MGAT5B). In addition, the presence or absence of core modification of N-glycans, namely, core fucose (included as an N-glycan branch in this manuscript), synthesized by FUT8, also confers large structural variation on N-glycans, thereby crucially regulating many protein-protein interactions. Numerous biochemical and medical studies have revealed that these branch structures are involved in a wide range of physiological and pathological processes. However, the mechanisms regulating the activity of the biosynthetic glycosyltransferases are yet to be fully elucidated. In this review, we summarize the previous findings and recent updates regarding regulation of the activity of these N-glycan branching enzymes. We hope that such information will help readers to develop a comprehensive overview of the complex system regulating mammalian N-glycan maturation.


Assuntos
Polissacarídeos , Humanos , Animais , Polissacarídeos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Glicosilação
8.
Mol Cell Proteomics ; 22(3): 100505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717059

RESUMO

Caenorhabditis elegans is a frequently employed genetic model organism and has been the object of a wide range of developmental, genetic, proteomic, and glycomic studies. Here, using an off-line MALDI-TOF-MS approach, we have analyzed the N-glycans of mixed embryos and liquid- or plate-grown L4 larvae. Of the over 200 different annotatable N-glycan structures, variations between the stages as well as the mode of cultivation were observed. While the embryonal N-glycome appears less complicated overall, the liquid- and plate-grown larvae differ especially in terms of methylation of bisecting fucose, α-galactosylation of mannose, and di-ß-galactosylation of core α1,6-fucose. Furthermore, we analyzed the O-glycans by LC-electrospray ionization-MS following ß-elimination; especially the embryonal O-glycomes included a set of phosphorylcholine-modified structures, previously not shown to exist in nematodes. However, the set of glycan structures cannot be clearly correlated with levels of glycosyltransferase transcripts in developmental RNA-Seq datasets, but there is an indication for coordinated expression of clusters of potential glycosylation-relevant genes. Thus, there are still questions to be answered in terms of how and why a simple nematode synthesizes such a diverse glycome.


Assuntos
Caenorhabditis , Animais , Caenorhabditis/metabolismo , Fucose/metabolismo , Proteômica , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Caenorhabditis elegans/metabolismo , Polissacarídeos/metabolismo , Glicômica
9.
J Proteome Res ; 23(1): 500-509, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38097511

RESUMO

Lung cancer is the leading cause of cancer-related death, with high morbidity and mortality rates due to the lack of reliable methods for diagnosing lung cancer at an early stage. Low-dose computed tomography can help detect abnormal areas in the lungs, but only 16% of cases are diagnosed early. Tests for lung cancer markers are often employed to determine genetic expression or mutations in lung carcinogenesis. Serum glycome analysis is a promising new method for early lung cancer diagnosis as glycopatterns exhibit significant differences in lung cancer patients. In this study, we employed a solid-phase chemoenzymatic method to systematically compare glycopatterns in benign cases, adenocarcinoma before and after surgery, and advanced stages of adenocarcinoma. Our findings indicate that serum high-mannose levels are elevated in both benign cases and adenocarcinoma, while complex N-glycans, including fucose and 2,6-linked sialic acid, are downregulated in the serum. Subsequently, we developed an algorithm that utilizes 16 altered N-glycans, 7 upregulated and 9 downregulated, to generate a score based on their intensity. This score can predict the stages of cancer progression in patients through glycan characterization. This methodology offers a potential means of diagnosing lung cancer through serum glycome analysis.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Polissacarídeos/metabolismo , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Fucose
10.
J Biol Chem ; 299(12): 105406, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270391

RESUMO

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Assuntos
Fucose , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Nucleotídeos , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Crescimento Epidérmico , Fucose/metabolismo , Células HEK293 , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Neoplasias , Proteínas de Transporte de Nucleotídeos/genética , Trombospondinas/metabolismo , Camundongos Knockout , Receptor Notch1/metabolismo , Transdução de Sinais
11.
J Biol Chem ; 299(1): 102738, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423686

RESUMO

Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.


Assuntos
Fucose , Transportador de Glucose Tipo 1 , Proteínas de Membrana Transportadoras , Transporte Biológico , Fucose/metabolismo , Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
12.
J Biol Chem ; 299(5): 104627, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944399

RESUMO

The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.


Assuntos
Adesinas de Escherichia coli , Receptor de Manose , Modelos Moleculares , Humanos , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana , Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Manose/metabolismo , Receptor de Manose/química , Receptor de Manose/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Simulação de Acoplamento Molecular
13.
Glycobiology ; 34(8)2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38976017

RESUMO

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Assuntos
Fibroblastos , Fucose , Fucosiltransferases , Receptor Notch1 , Humanos , Fibroblastos/metabolismo , Fucose/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética , Receptor Notch1/metabolismo , Receptor Notch1/química , Família de Proteínas EGF/metabolismo
14.
Immunology ; 171(2): 286-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991344

RESUMO

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.


Assuntos
Lectinas Tipo C , Melanoma , Masculino , Humanos , Células Dendríticas , Glicoproteínas , Receptores Toll-Like/metabolismo , Polissacarídeos/metabolismo
15.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735264

RESUMO

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Manose , Humanos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Manose/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteômica
16.
New Phytol ; 241(2): 747-763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964509

RESUMO

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Assuntos
Arabidopsis , Fucose , Fucose/metabolismo , Guanosina Difosfato Fucose/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polissacarídeos/metabolismo
17.
Glycoconj J ; 41(3): 217-224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780715

RESUMO

Mucins are a family of high-molecular-weight O-linked glycoproteins which are the primary structural components of mucus and maintain homeostasis in the oral cavity. The present study was conducted as the first step towards establishing a correlation of aberrant mucin glycosylation with tobacco-associated clinical conditions. Tobacco habituates for the study were identified on the basis of type, duration, amount, and frequency of using tobacco products. The secretory mucin and its saccharides were determined from the saliva collected from smokers, smokeless tobacco habituates, and healthy, nonsmoking individuals. On the one hand, the salivary mucin content was markedly reduced in smokeless tobacco habituates with respect to smokers. On the other hand, the amount of sialic acid and fucose moieties of salivary mucin was increased in both smokers and smokeless tobacco habituates compared to the healthy cohort. Furthermore, the duration of tobacco exposure have been identified as the main factor influencing the extent of damage to the oral mucosa in terms of mucin secretion. The reduced secretory mucin content with aberrant glycosylation in the oral cavity may have a significant role in the further development or progression of oral diseases.


Assuntos
Mucinas , Saliva , Humanos , Glicosilação , Projetos Piloto , Masculino , Adulto , Mucinas/metabolismo , Feminino , Saliva/metabolismo , Saliva/química , Pessoa de Meia-Idade , Tabaco sem Fumaça/efeitos adversos , Boca/metabolismo , Boca/patologia , Ácido N-Acetilneuramínico/metabolismo
18.
Bioorg Chem ; 145: 107189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350272

RESUMO

6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.


Assuntos
Aldose-Cetose Isomerases , Hexoses , Sorbose , Fucose , Racemases e Epimerases/genética , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/química , Açúcares , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética
19.
Biosci Biotechnol Biochem ; 88(2): 177-180, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38017627

RESUMO

A sugar acid dehydratase from Paraburkholderia mimosarum, potentially involved in the non-phosphorylated L-fucose pathway, was functionally characterized. A biochemical analysis revealed its unique heterodimeric structure and higher specificity toward L-fuconate than D-arabinonate, D-altronate, and L-xylonate, which differed from homomeric homologs. This unique L-fuconate dehydratase has a poor phylogenetic relationship with other functional members of the D-altronate dehydratase/galactarate dehydratase protein family.


Assuntos
Fucose , Hidroliases , Fucose/metabolismo , Filogenia , Hidroliases/genética , Bactérias/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385330

RESUMO

Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.


Assuntos
Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Leishmania major/metabolismo , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Fucosiltransferases/genética , Mutação , Plasmídeos , Transporte Proteico , Proteínas de Protozoários/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA