Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2221533120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527347

RESUMO

Alterations in fMRI-based brain functional network connectivity (FNC) are associated with schizophrenia (SCZ) and the genetic risk or subthreshold clinical symptoms preceding the onset of SCZ, which often occurs in early adulthood. Thus, age-sensitive FNC changes may be relevant to SCZ risk-related FNC. We used independent component analysis to estimate FNC from childhood to adulthood in 9,236 individuals. To capture individual brain features more accurately than single-session fMRI, we studied an average of three fMRI scans per individual. To identify potential familial risk-related FNC changes, we compared age-related FNC in first-degree relatives of SCZ patients mostly including unaffected siblings (SIB) with neurotypical controls (NC) at the same age stage. Then, we examined how polygenic risk scores for SCZ influenced risk-related FNC patterns. Finally, we investigated the same risk-related FNC patterns in adult SCZ patients (oSCZ) and young individuals with subclinical psychotic symptoms (PSY). Age-sensitive risk-related FNC patterns emerge during adolescence and early adulthood, but not before. Young SIB always followed older NC patterns, with decreased FNC in a cerebellar-occipitoparietal circuit and increased FNC in two prefrontal-sensorimotor circuits when compared to young NC. Two of these FNC alterations were also found in oSCZ, with one exhibiting reversed pattern. All were linked to polygenic risk for SCZ in unrelated individuals (R2 varied from 0.02 to 0.05). Young PSY showed FNC alterations in the same direction as SIB when compared to NC. These results suggest that age-related neurotypical FNC correlates with genetic risk for SCZ and is detectable with MRI in young participants.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adulto , Adolescente , Humanos , Criança , Adulto Jovem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489786

RESUMO

While it is well known that mental fatigue impairs fine motor performance, the investigation into its neural basis remains scant. Here, we investigate the impact of mental fatigue on fine motor performance and explore its underlying neural network connectivity mechanisms. A total of 24 healthy male university students were recruited and randomly divided into two groups: a mental fatigue group (MF) and a control group (Control). Both groups completed 50 dart throws, while electroencephalography (EEG) data were collected. Following the Stroop intervention, participants in the MF group exhibited a decrease in Stroop task accuracy and throwing performance, and an increase in reaction time along with VAS and NASA scores. The EEG data during dart-throwing revealed that the network connectivity strength of theta oscillations in the frontal and left central regions was significantly higher in the MF group compared with the Control group, while the network connectivity strength of alpha oscillations in the left parietal region was significantly enhanced. The interregional connectivity within the theta and alpha rhythm bands, particularly in the frontal-central-parietal network connections, also showed a significant increase in the MF group. Mental fatigue impairs dart throwing performance and is accompanied by increased connectivity in alpha and theta.


Assuntos
Eletroencefalografia , Lobo Parietal , Humanos , Masculino , Tempo de Reação , Ritmo alfa , Fadiga Mental
3.
Neuroimage ; 292: 120599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608799

RESUMO

This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Rede Nervosa , Osteoartrite do Joelho , Humanos , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/fisiopatologia , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto , Conectoma/métodos , Descanso , Mapeamento Encefálico/métodos
4.
Neuroimage ; 285: 120472, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007187

RESUMO

Dynamic functional networks (DFN) have considerably advanced modelling of the brain communication processes. The prevailing implementation capitalizes on the system and network-level correlations between time series. However, this approach does not account for the continuous impact of non-dynamic dependencies within the statistical correlation, resulting in relatively stable connectivity patterns of DFN over time with limited sensitivity for communication dynamic between brain regions. Here, we propose an activation network framework based on the activity of functional connectivity (AFC) to extract new types of connectivity patterns during brain communication process. The AFC captures potential time-specific fluctuations associated with the brain communication processes by eliminating the non-dynamic dependency of the statistical correlation. In a simulation study, the positive correlation (r=0.966,p<0.001) between the extracted dynamic dependencies and the simulated "ground truth" validates the method's dynamic detection capability. Applying to autism spectrum disorders (ASD) and COVID-19 datasets, the proposed activation network extracts richer topological reorganization information, which is largely invisible to the DFN. Detailed, the activation network exhibits significant inter-regional connections between function-specific subnetworks and reconfigures more efficiently in the temporal dimension. Furthermore, the DFN fails to distinguish between patients and healthy controls. However, the proposed method reveals a significant decrease (p<0.05) in brain information processing abilities in patients. Finally, combining two types of networks successfully classifies ASD (83.636 % ± 11.969 %,mean±std) and COVID-19 (67.333 % ± 5.398 %). These findings suggest the proposed method could be a potential analytic framework for elucidating the neural mechanism of brain dynamics.


Assuntos
Transtorno do Espectro Autista , COVID-19 , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Comunicação
5.
Neurobiol Dis ; 195: 106493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579913

RESUMO

BACKGROUND: The clinical symptoms of progressive supranuclear palsy (PSP) may be mediated by aberrant dynamic functional network connectivity (dFNC). While earlier research has found altered functional network connections in PSP patients, the majority of those studies have concentrated on static functional connectivity. Nevertheless, in this study, we sought to evaluate the modifications in dynamic characteristics and establish the correlation between these disease-related changes and clinical variables. METHODS: In our study, we conducted a study on 53 PSP patients and 65 normal controls. Initially, we employed a group independent component analysis (ICA) to derive resting-state networks (RSNs), while employing a sliding window correlation approach to produce dFNC matrices. The K-means algorithm was used to cluster these matrices into distinct dynamic states, and then state analysis was subsequently employed to analyze the dFNC and temporal metrics between the two groups. Finally, we made a correlation analysis. RESULTS: PSP patients showed increased connectivity strength between medulla oblongata (MO) and visual network (VN) /cerebellum network (CBN) and decreased connections were found between default mode network (DMN) and VN/CBN, subcortical cortex network (SCN) and CBN. In addition, PSP patients spend less fraction time and shorter dwell time in a diffused state, especially the MO and SCN. Finally, the fraction time and mean dwell time in the distributed connectivity state (state 2) is negatively correlated with duration, bulbar and oculomotor symptoms. DISCUSSION: Our findings were that the altered connectivity was mostly concentrated in the CBN and MO. In addition, PSP patients had different temporal dynamics, which were associated with bulbar and oculomotor symptoms in PSPRS. It suggest that variations in dynamic functional network connectivity properties may represent an essential neurological mechanism in PSP.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
6.
Eur J Neurosci ; 59(8): 2029-2045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279577

RESUMO

Functional reorganization is a response to auditory deficits or deprivation, and less is known about the overall brain network alterations involving resting-state networks (RSNs) and multiple functional networks in patients with occupational noise-induced hearing loss (NIHL). So this study evaluated resting-state functional network connectivity (FNC) alterations in occupational NIHL using an independent component analysis (ICA). In total, 79 mild NIHL patients (MP), 32 relatively severe NIHL patients (RSP), and 84 age- and education- matched healthy controls (HC) were recruited. All subjects were tested using the Mini-mental State Examination scale, the tinnitus Handicap Inventory scale, the Hamilton Anxiety scale (HAMA) and scanned by T1-3DFSPGR, resting-state functional magnetic resonance imaging sequence in 3.0 T and analysed by the ICA. Seven RSNs were identified, compared with the HC, the MP showed increased FNC within the executive control network (ECN) and enhanced FNC within the default mode network (DMN) and the visual network (VN); compared with the HC, the RSP showed decreased FNC within the ECN and auditory network (AUN), DMN and VN; no significant changes in FNC were found in the MP compared with the RSP. Furthermore, the correlation analysis between the noise exposure time and hearing loss level, HAMA were both negative, and there were no significant correlations between the abnormal RSNs and the hearing level, noise exposure time and HAMA. These findings indicate that different degrees of NIHL involve different alterations in RSNs connectivity and may reveal the neural mechanisms related to emotion-related features and functional abnormalities following long-term NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Zumbido , Humanos , Mapeamento Encefálico , Perda Auditiva Provocada por Ruído/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Zumbido/diagnóstico por imagem
7.
Psychol Med ; : 1-11, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482853

RESUMO

BACKGROUND: Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients. METHODS: We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention. RESULTS: Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group. CONCLUSIONS: These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.

8.
Diabetes Obes Metab ; 26(2): 650-662, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961040

RESUMO

AIMS: To investigate the neural static and dynamic intrinsic activity of intra-/inter-network topology among patients with type 2 diabetes (T2D) with non-alcoholic fatty liver disease (NAFLD) and those without NAFLD (T2NAFLD group and T2noNAFLD group, respectively) and to assess the relationship with metabolism. METHODS: Fifty-six patients with T2NAFLD, 78 with T2noNAFLD, and 55 healthy controls (HCs) were recruited to the study. Participants had normal cognition and underwent functional magnetic resonance imaging scans, clinical measurements, and global cognition evaluation. Independent component analysis was used to identify frequency spectrum parameters, static functional network connectivity, and temporal properties of dynamic functional network connectivity (P < 0.05, false discovery rate-corrected). Statistical analysis involved one-way analysis of covariance with post hoc, partial correlation and canonical correlation analyses. RESULTS: Our findings showed that: (i) T2NAFLD patients had more disordered glucose and lipid metabolism, had more severe insulin resistance, and were more obese than T2noNAFLD patients; (ii) T2D patients exhibited disrupted brain function, as evidenced by alterations in intra-/inter-network topology, even without clinically measurable cognitive impairment; (iii) T2NAFLD patients had more significant reductions in the frequency spectrum parameters of cognitive executive and visual networks than those with T2noNAFLD; and (iv) altered brain function in T2D patients was correlated with postprandial glucose, high-density lipoprotein cholesterol, and waist-hip ratio. CONCLUSION: This study may provide novel insights into neuroimaging correlates for underlying pathophysiological processes inducing brain damage in T2NAFLD. Thus, controlling blood glucose levels, lipid levels and abdominal obesity may reduce brain damage risk in such patients.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Glucose
9.
Audiol Neurootol ; 29(2): 146-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37963433

RESUMO

INTRODUCTION: The aim of the study was to investigate differences in the intra- and inter-network functional connectivity (FC) of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) in patients with tinnitus, with (T + H) or without hearing loss (T). METHODS: We performed rs-fMRI on 82 participants (21 T, 32 T + H, and 29 healthy controls). An independent component analysis (ICA) was performed to obtain the resting-state networks (RSNs) and calculate the differences in FC. Moreover, we investigated the relationships between networks using functional network connectivity analysis. RESULTS: We identified nine major RSNs, including the auditory network; default mode network; executive control network (ECN), including the right frontoparietal network and left frontoparietal network (LFPN); somatomotor network (SMN); dorsal attention network; ventral attention network; salience network (SN); and visual network (VN). These RSNs were extracted in all groups using ICA. Compared with that in the control group, we observed reduced FC between the LFPN and VN in the T group and between the LFPN and SN in the T + H group. The inter-network connectivity analysis revealed decreased network interactions in the SMN (IC 22)-ECN (IC 2), SMN (IC 22)-VN (IC 8), and VN (IC 14)-SN (IC 3) connections in the T + H group, compared with the healthy control group. Furthermore, we observed significantly decreased network interactions in the SMN (IC 22)-VN (IC 8) in the T group. CONCLUSIONS: Our results indicated abnormalities within the brain networks of the T and T + H groups, including the SMN, ECN, and VN, compared with the control group. Furthermore, both T and T + H groups demonstrated reduced FC between the LFPN, VN, and SMN. There were no significant differences between the T and the T + H groups. Furthermore, we observed reduced FC between the right olfactory cortex and the orbital part of the right middle frontal gyrus, right precentral gyrus, left dorsolateral superior frontal gyrus, and right triangular part of the inferior frontal gyrus within the T and T + H groups. Thus, disruptions in brain regions responsible for attention, stimulus monitoring, and auditory orientation contribute to tinnitus generation.


Assuntos
Surdez , Perda Auditiva , Zumbido , Humanos , Mapeamento Encefálico/métodos , Zumbido/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Perda Auditiva/diagnóstico por imagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-39044022

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of static FNC (sFNC) that reflects connectivity variations among brain networks. This study aimed to investigate changes in sFNC and dFNC strength and temporal properties in individuals with subthreshold depression (StD). Forty-two individuals with subthreshold depression and 38 healthy controls (HCs) were included in this study. Group independent component analysis (GICA) was used to determine target resting-state networks, namely, executive control network (ECN), default mode network (DMN), sensorimotor network (SMN) and dorsal attentional network (DAN). Sliding window and k-means clustering analyses were used to identify dFNC patterns and temporal properties in each subject. We compared sFNC and dFNC differences between the StD and HCs groups. Relationships between changes in FNC strength, temporal properties, and neurophysiological score were evaluated by Spearman's correlation analysis. The sFNC analysis revealed decreased FNC strength in StD individuals, including the DMN-CEN, DMN-SMN, SMN-CEN, and SMN-DAN. In the dFNC analysis, 4 reoccurring FNC patterns were identified. Compared to HCs, individuals with StD had increased mean dwell time and fraction time in a weakly connected state (state 4), which is associated with self-focused thinking status. In addition, the StD group demonstrated decreased dFNC strength between the DMN-DAN in state 2. sFNC strength (DMN-ECN) and temporal properties were correlated with HAMD-17 score in StD individuals (all p < 0.01). Our study provides new evidence on aberrant time-varying brain activity and large-scale network interaction disruptions in StD individuals, which may provide novel insight to better understand the underlying neuropathological mechanisms.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38662092

RESUMO

This study aims to investigate the altered patterns of dynamic functional network connectivity (dFNC) between deficit schizophrenia (DS) and non-deficit schizophrenia (NDS), and further explore the associations with cognitive impairments. 70 DS, 91 NDS, and 120 matched healthy controls (HCs) were enrolled. The independent component analysis was used to segment the whole brain. The fMRI brain atlas was used to identify functional networks, and the dynamic functional connectivity (FC) of each network was detected. Correlation analysis was used to explore the associations between altered dFNC and cognitive functions. Four dynamic states were identified. Compared to NDS, DS showed increased FC between sensorimotor network and default mode network in state 1 and decreased FC within auditory network in state 4. Additionally, DS had a longer mean dwell time of state 2 and a shorter one in state 3 compared to NDS. Correlation analysis showed that fraction time and mean dwell time of states were correlated with cognitive impairments in DS. This study demonstrates the distinctive altered patterns of dFNC between DS and NDS patients. The associations with impaired cognition provide specific neuroimaging evidence for the pathogenesis of DS.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38906983

RESUMO

BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) has a high prevalence of co-occurring impaired self-regulation (dysregulation), exacerbating adverse outcomes. Neural correlates underlying impaired self-regulation in ADHD remain inconclusive. We aimed to investigate the impact of dysregulation on intrinsic functional connectivity (iFC) in children with ADHD and the correlation of iFC with dysregulation among children with ADHD relative to typically developing controls (TDC). METHODS: Resting-state functional MRI data of 71 children with ADHD (11.38 ± 2.44 years) and 117 age-matched TDC were used in the final analysis. We restricted our analyses to resting-state networks (RSNs) of interest derived from independent component analysis. Impaired self-regulation was estimated based on the Child Behavioral Checklist-Dysregulation Profile. RESULTS: Children with ADHD showed stronger iFC than TDC in the left frontoparietal network, somatomotor network (SMN), visual network (VIS), default-mode network (DMN), and dorsal attention network (DAN) (FWE-corrected alpha < 0.05). After adding dysregulation levels as an extra regressor, the ADHD group only showed stronger iFC in the VIS and SMN. ADHD children with high dysregulation had higher precuneus iFC within DMN than ADHD children with low dysregulation. Angular gyrus iFC within DMN was positively correlated with dysregulation in the ADHD group but negatively correlated with dysregulation in the TDC group. Functional network connectivity showed ADHD had a greater DMN-DAN connection than TDC, regardless of the dysregulation level. CONCLUSIONS: Our findings suggest that DMN connectivity may contribute to impaired self-regulation in ADHD. Impaired self-regulation should be considered categorical and dimensional moderators for the neural correlates of altered iFC in ADHD.

13.
Cereb Cortex ; 33(22): 11025-11035, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37746803

RESUMO

This work explored neural network changes in early Parkinson's disease: Resting-state functional magnetic resonance imaging was used to investigate functional alterations in different stages of Parkinson's disease (PD). Ninety-five PD patients (50 early/mild and 45 early/moderate) and 37 healthy controls (HCs) were included. Independent component analysis revealed significant differences in intra-network connectivity, specifically in the default mode network (DMN) and right frontoparietal network (RFPN), in both PD groups compared to HCs. Inter-network connectivity analysis showed reduced connectivity between the executive control network (ECN) and DMN, as well as ECN-left frontoparietal network (LFPN), in early/mild PD. Early/moderate PD exhibited decreased connectivity in ECN-LFPN, ECN-RFPN, ECN-DMN, and DMN-auditory network, along with increased connectivity in LFPN-cerebellar network. Correlations were found between ECN-DMN and ECN-LFPN connections with UPDRS-III scores in early/mild PD. These findings suggest that PD progression involves dysfunction in multiple intra- and inter-networks, particularly implicating the ECN, and a wider range of abnormal functional networks may mark the progression of the disease.


Assuntos
Encéfalo , Doença de Parkinson , Humanos , Mapeamento Encefálico/métodos , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação
14.
Cereb Cortex ; 33(24): 11582-11593, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37851712

RESUMO

Autism spectrum disorder is a neurodevelopmental disorder whose core deficit is social dysfunction. Previous studies have indicated that structural changes in white matter are associated with autism spectrum disorder. However, few studies have explored the alteration of the large-scale white-matter functional networks in autism spectrum disorder. Here, we identified ten white-matter functional networks on resting-state functional magnetic resonance imaging data using the K-means clustering algorithm. Compared with the white matter and white-matter functional network connectivity of the healthy controls group, we found significantly decreased white matter and white-matter functional network connectivity mainly located within the Occipital network, Middle temporo-frontal network, and Deep network in autism spectrum disorder. Compared with healthy controls, findings from white-matter gray-matter functional network connectivity showed the decreased white-matter gray-matter functional network connectivity mainly distributing in the Occipital network and Deep network. Moreover, we compared the spontaneous activity of white-matter functional networks between the two groups. We found that the spontaneous activity of Middle temporo-frontal and Deep network was significantly decreased in autism spectrum disorder. Finally, the correlation analysis showed that the white matter and white-matter functional network connectivity between the Middle temporo-frontal network and others networks and the spontaneous activity of the Deep network were significantly correlated with the Social Responsiveness Scale scores of autism spectrum disorder. Together, our findings indicate that changes in the white-matter functional networks are associated behavioral deficits in autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Humanos , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/patologia , Análise por Conglomerados , Encéfalo
15.
Neurol Sci ; 45(6): 2651-2659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38153677

RESUMO

BACKGOUND: Although cognitive control is essential for efficient gait, the associations between cognitive and motor networks regarding gait in individuals with Parkinson's disease (PD) remain to be determined. Herein, we enrolled 28 PD and 28 controls to compare internetwork coupling among cognitive and motor networks and examine its relationship with single- and dual-task gait performance in PD. METHODS: The dorsal attention network (DAN), left and right frontoparietal control networks (FPNs), sensorimotor network, and lateral motor network were identified using resting-state functional magnetic resonance imaging data. The time taken to complete a 10-m walk test during cognitive or physical dual-tasks in PD was calculated representing gait performance. RESULTS: We observed that the internetwork couplings between the DAN and motor networks and between the motor networks decreased whereas those between the left FPN and DAN and motor networks increased in PD compared to controls using a permutation test. There was no significant correlation between the internetwork couplings and single- and dual-task gait performance in PD. Nevertheless, improved cognitive dual-task performance showed a positive correlation with the DAN and left FPN coupling and a negative correlation with the DAN and lateral motor network coupling in a good performance group. The opposite relationship was observed in the poor cognitive dual-task performance group. CONCLUSION: Our findings suggest a neural mechanism of cognitive control on gait to compensate for reduced goal-directed attention in PD who maintain cognitive dual-task performance.


Assuntos
Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Cognição/fisiologia , Marcha/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Atenção/fisiologia
16.
Pediatr Radiol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134864

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) studies have revealed extensive functional reorganization in patients with sensorineural hearing loss (SNHL). However, almost no study focuses on the dynamic functional connectivity after hearing loss. OBJECTIVE: This study aimed to investigate dynamic functional connectivity changes in children with profound bilateral congenital SNHL under the age of 3 years. MATERIALS AND METHODS: Thirty-two children with profound bilateral congenital SNHL and 24 children with normal hearing were recruited for the present study. Independent component analysis identified 18 independent components composing five resting-state networks. A sliding window approach was used to acquire dynamic functional matrices. Three states were identified using the k-means algorithm. Then, the differences in temporal properties and the variance of network efficiency between groups were compared. RESULTS: The children with SNHL showed longer mean dwell time and decreased functional connectivity between the auditory network and sensorimotor network in state 3 (P < 0.05), which was characterized by relatively stronger functional connectivity between high-order resting-state networks and motion and perception networks. There was no difference in the variance of network efficiency. CONCLUSIONS: These results indicated the functional reorganization due to hearing loss. This study also provided new perspectives for understanding the state-dependent connectivity patterns in children with SNHL.

17.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339531

RESUMO

Network neuroscience, a multidisciplinary field merging insights from neuroscience and network theory, offers a profound understanding of neural network intricacies. However, the impact of varying node sizes on computed graph metrics in neuroimaging data remains underexplored. This study addresses this gap by adopting a data-driven methodology to delineate functional nodes and assess their influence on graph metrics. Using the Neuromark framework, automated independent component analysis is applied to resting state fMRI data, capturing functional network connectivity (FNC) matrices. Global and local graph metrics reveal intricate connectivity patterns, emphasizing the need for nuanced analysis. Notably, node sizes, computed based on voxel counts, contribute to a novel metric termed 'node-metric coupling' (NMC). Correlations between graph metrics and node dimensions are consistently observed. The study extends its analysis to a dataset comprising Alzheimer's disease, mild cognitive impairment, and control subjects, showcasing the potential of NMC as a biomarker for brain disorders. The two key outcomes underscore the interplay between node sizes and resultant graph metrics within a given atlas, shedding light on an often-overlooked source of variability. Additionally, the study highlights the utility of NMC as a valuable biomarker, emphasizing the necessity of accounting for node sizes in future neuroimaging investigations. This work contributes to refining comparative studies employing diverse atlases and advocates for thoughtful consideration of intra-atlas node size in shaping graph metrics, paving the way for more robust neuroimaging research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem
18.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056908

RESUMO

Over the past decade and a half, dynamic functional imaging has revealed low-dimensional brain connectivity measures, identified potential common human spatial connectivity states, tracked the transition patterns of these states, and demonstrated meaningful transition alterations in disorders and over the course of development. Recently, researchers have begun to analyze these data from the perspective of dynamic systems and information theory in the hopes of understanding how these dynamics support less easily quantified processes, such as information processing, cortical hierarchy, and consciousness. Little attention has been paid to the effects of psychiatric disease on these measures, however. We begin to rectify this by examining the complexity of subject trajectories in state space through the lens of information theory. Specifically, we identify a basis for the dynamic functional connectivity state space and track subject trajectories through this space over the course of the scan. The dynamic complexity of these trajectories is assessed along each dimension of the proposed basis space. Using these estimates, we demonstrate that schizophrenia patients display substantially simpler trajectories than demographically matched healthy controls and that this drop in complexity concentrates along specific dimensions. We also demonstrate that entropy generation in at least one of these dimensions is linked to cognitive performance. Overall, the results suggest great value in applying dynamic systems theory to problems of neuroimaging and reveal a substantial drop in the complexity of schizophrenia patients' brain function.

19.
Neuroimage ; 283: 120437, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924896

RESUMO

A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Humanos , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Estudos de Coortes , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Súbita/diagnóstico por imagem , Perda Auditiva Súbita/complicações , Perda Auditiva Súbita/terapia , Audição , Neuroimagem , Estudos Retrospectivos
20.
Neurobiol Dis ; 185: 106265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597816

RESUMO

BACKGROUND: Freezing of gait (FOG) is an intractable and paroxysmal gait disorder that seriously affects the quality of life of Parkinson's disease (PD) patients. Emerging studies have reported abnormal brain activity of distributed networks in FOG patients, whereas ignoring the intrinsic dynamic fluctuations of functional connectivity. The purpose of this study was to examine the dynamic functional network connectivity (dFNC) of PD-FOG. METHODS: In total, 52 PD patients with FOG (PD-FOG), 73 without FOG (PD-NFOG) and 38 healthy controls (HCs) received resting state functional magnetic resonance imaging (rs-fMRI). Sliding window method, k-means clustering and graph theory analysis were employed to retrieve dynamic characteristics of PD-FOG. Partial correlation analysis was conducted to verify whether the dFNC was related to freezing gait severity. RESULTS: Seven brain networks were identified and configured into seven states. Compared to PD-NFOG, significant spatial pattern was identified for state 2 in freezers, showing increased functional coupling between default mode network (DMN) and basal ganglia network (BG), as a concrete manifestation of increased precuneus-caudate coupling. The mean dwell time and fractional window of state 2 had a positive correlation with FOG severity. Furthermore, PD-FOG group exhibited lower variance in nodal efficiency of independent components (IC) 7 (left precuneus). CONCLUSIONS: Our study suggested that aberrant coupling of precuneus-caudate and disrupted variability of precuneus efficiency might be associated to the neural mechanisms of FOG.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Qualidade de Vida , Marcha , Gânglios da Base
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA