Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096387

RESUMO

AIM: Candida auris, fast evolving drug-resistant fungus, poses an imminent global health threat. Alternative drug-resistance nonevoking treatment options are necessary. This study explored the antifungal and antibiofilm efficacies of Withania somnifera seed oil extracted using super critical CO2 (WSSO) against clinically isolated Fluconazole-resistant C. auris and its putative mode-of-action. METHODS AND RESULTS: Effects of WSSO on C. auris were tested by broth microdilution method, with observed IC50 at 5.96 mg ml-1. Time-kill assay revealed that WSSO is fungistatic. Mechanistically, ergosterol binding and sorbitol protection assays showed that C. auris cell membrane and cell wall are the targets for WSSO. Lactophenol: Cotton-Blue: Trypan-Blue staining confirmed loss of intracellular contents by WSSO treatment. Candida auris biofilm formation was disrupted by WSSO (BIC50: 8.52 mg ml-1). Additionally, WSSO exhibited dose and time-dependent mature biofilm eradication property with 50% efficacies at 23.27, 19.28, 18.18, and 7.22 mg ml-1 over 24, 48, 72, and 96 h, respectively. Biofilm eradication by WSSO was further substantiated through scanning electron microscopy. Standard-of-Care Amphotericin B, at its break-point concentration, (2 µg ml-1) was found to be inefficient as an antibiofilm agent. CONCLUSIONS: WSSO is a potent antifungal agent effective against planktonic C. auris and its biofilm.


Assuntos
Candida , Withania , Candida auris , Antifúngicos/farmacologia , Biofilmes , Óleos de Plantas/farmacologia , Testes de Sensibilidade Microbiana
2.
Can J Microbiol ; 69(5): 185-198, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753728

RESUMO

Dimorphic species of Mucor, which are cosmopolitan fungi belonging to subphylum Mucoromycotina, are metabolically versatile. Some species of Mucor are sources of biotechnological products, such as biodiesel from Mucor circinelloides and expression of heterologous proteins from Mucor lusitanicus. Furthermore, Mucor lusitanicus has been described as a model for understanding mucormycosis infections. However, little is known regarding the relationship between Mucor lusitanicus and other soil inhabitants. In this study, we investigated the potential use of Mucor lusitanicus as a biocontrol agent against fungal phytopathogens, namely Fusarium oxysporum f. sp. lycopersici, Fusarium solani, and Alternaria solani, which destroy economically important crops. Results showed that aerobic cell-free supernatants of the culture broth (SS) from Mucor lusitanicus inhibited the growth of the fungal phytopathogens in culture, soil, and tomato fruits. The SS obtained from a strain of Mucor lusitanicus carrying the deletion of rfs gene, which encodes an enzyme involved in the synthesis of siderophore rhizoferrin, had a decreased inhibitory effect against the growth of the phytopathogens. Contrarily, this inhibitory effect was more evident with the SS from an rfs-overexpressing strain compared to the wild-type. This study provides a framework for the potential biotechnological use of the molecules secreted from Mucor lusitanicus in the biocontrol of fungal phytopathogens.


Assuntos
Mucor , Mucormicose , Mucor/genética , Sideróforos , Mucormicose/microbiologia , Doenças das Plantas
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834625

RESUMO

Fusarium head blight (FHB) is primarily caused by Fusarium graminearum and severely reduces wheat yield, causing mycotoxin contamination in grains and derived products. F. graminearum-secreted chemical toxins stably accumulate in plant cells, disturbing host metabolic homeostasis. We determined the potential mechanisms underlying FHB resistance and susceptibility in wheat. Three representative wheat varieties (Sumai 3, Yangmai 158, and Annong 8455) were inoculated with F. graminearum and their metabolite changes were assessed and compared. In total, 365 differentiated metabolites were successfully identified. Amino acids and derivatives, carbohydrates, flavonoids, hydroxycinnamate derivatives, lipids, and nucleotides constituted the major changes in response to fungal infection. Changes in defense-associated metabolites, such as flavonoids and hydroxycinnamate derivatives, were dynamic and differed among the varieties. Nucleotide and amino acid metabolism and the tricarboxylic acid cycle were more active in the highly and moderately resistant varieties than in the highly susceptible variety. We demonstrated that two plant-derived metabolites, phenylalanine and malate, significantly suppressed F. graminearum growth. The genes encoding the biosynthetic enzymes for these two metabolites were upregulated in wheat spike during F. graminearum infection. Thus, our findings uncovered the metabolic basis of resistance and susceptibility of wheat to F. graminearum and provided insights into engineering metabolic pathways to enhance FHB resistance in wheat.


Assuntos
Fusarium , Micotoxinas , Triticum/genética , Fusarium/fisiologia , Micotoxinas/metabolismo , Metabolômica , Doenças das Plantas/microbiologia
4.
Molecules ; 28(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005400

RESUMO

Antibiotic resistance is now a first-order health problem, which makes the development of new families of antimicrobials imperative. These compounds should ideally be inexpensive, readily available, highly active, and non-toxic. Here, we present the results of our investigation regarding the antimicrobial activity of a series of natural and synthetic polyamines with different architectures (linear, tripodal, and macrocyclic) and their derivatives with the oxygen-containing aromatic functional groups 1,3-benzodioxol, ortho/para phenol, or 2,3-dihydrobenzofuran. The new compounds were prepared through an inexpensive process, and their activity was tested against selected strains of yeast, as well as Gram-positive and Gram-negative bacteria. In all cases, the conjugated derivatives showed antimicrobial activity higher than the unsubstituted polyamines. Several factors, such as the overall charge at physiological pH, lipophilicity, and the topology of the polyamine scaffold were relevant to their activity. The nature of the lipophilic moiety was also a determinant of human cell toxicity. The lead compounds were found to be bactericidal and fungistatic, and they were synergic with the commercial antifungals fluconazole, cycloheximide, and amphotericin B against the yeast strains tested.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Poliaminas/farmacologia , Poliaminas/química , Saccharomyces cerevisiae , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana
5.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110671

RESUMO

The Aspergillus genus, the etiological agent of aspergillosis, is an important food contaminant and mycotoxin producer. Plant extracts and essential oils are a source of bioactive substances with antimicrobial potential that can be used instead of synthetic food preservatives. Species from the Lauraceae family and the Ocotea genus have been used as traditional medicinal herbs. Their essential oils can be nanoemulsified to enhance their stability and bioavailability and increase their use. Therefore, this study sought to prepare and characterize both nanoemulsion and essential oil from the Ocotea indecora's leaves, a native and endemic species from the Mata Atlântica forest in Brazil, and evaluate the activity against Aspergillus flavus RC 2054, Aspergillus parasiticus NRRL 2999, and Aspergillus westerdjikiae NRRL 3174. The products were added to Sabouraud Dextrose Agar at concentrations of 256, 512, 1024, 2048, and 4096 µg/mL. The strains were inoculated and incubated for up to 96 h with two daily measurements. The results did not show fungicidal activity under these conditions. A fungistatic effect, however, was observed. The nanoemulsion decreased the fungistatic concentration of the essential oil more than ten times, mainly in A. westerdjikiae. There were no significant changes in aflatoxin production.


Assuntos
Aflatoxinas , Ocotea , Óleos Voláteis , Óleos Voláteis/farmacologia , Aspergillus , Aspergillus flavus
6.
J Obstet Gynaecol ; 43(1): 2195001, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37029724

RESUMO

At concentrations achieved following systemic administration, the primary effect of imidazoles and triazoles on fungi is inhibition of 14-α-sterol demethylase, a microsomal cytochrome P450 (CYP) enzyme. Imidazoles and triazoles impair the biosynthesis of ergosterol for the cytoplasmic membrane and lead to the accumulation of 14-α-methyl sterols. The synthetic imidazole miconazole is additionally able to increase intracellular reactive oxygen species, at least in part through inhibition of fungal catalase and peroxidase. This unique feature of miconazole is probably the basis for its fungicidal activity in C. albicans, in addition to the fungistatic mode of action. Studies show that miconazole is superior to nystatin treatment and demonstrate its impact as one of the best options in managing vulvovaginal candidiasis. Regarding recurrent vulvovaginal candidiasis, several new drugs are currently developed to ensure effective treatment also for this group of patients.


Assuntos
Candidíase Vulvovaginal , Miconazol , Feminino , Humanos , Miconazol/efeitos adversos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Nistatina/farmacologia , Nistatina/uso terapêutico , Candida albicans , Sistema Enzimático do Citocromo P-450/uso terapêutico
7.
Bioorg Med Chem Lett ; 63: 128649, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245665

RESUMO

Zygomycetes are ubiquitous saprophytes in natural environments which transform organic matter. Some zygomycetes of gender Mucor have attracted interest in health sector. Due to its ability as opportunistic microorganisms infecting immuno-compromised people and to the few available pharmacological treatments, the mucormycosis is receiving worldwide attention. Concerning to the pharmacological treatments, some triazole-based compounds such as fluconazole are extensively used. Nevertheless, we focused in the quinolines since they are broadly used models for the design and development of new synthetic antifungal agents. In this study, the fungistatic activity on M. circinelloides of various 2-aryl-4-aryloxyquinoline-based compounds was discovered, and in some cases, it resulted better than reference compound fluconazole. These quinoline derivatives were synthesized via the Csp2-O bond formation using diaryliodonium(III) salts chemistry. A QSAR study was carried out to quantitatively correlate the chemical structure of the tested compounds with their biological activity. Also, a docking study to identify a plausible action target of our more active quinolines was carried out. The results highlighted an increased activity with the fluorine- and nitro-containing derivatives. In light of the few mucormycosis pharmacological treatments, herein we present some non-described molecules with excellent in vitro activities and potential use in the mucormycosis treatment.


Assuntos
Mucormicose , Quinolinas , Fluconazol , Humanos , Mucor , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Relação Quantitativa Estrutura-Atividade , Quinolinas/farmacologia , Quinolinas/uso terapêutico
8.
Nanotechnology ; 33(43)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35820406

RESUMO

Growing international problem with pathogens acquiring resistance to antibiotics is the reason for the search for bactericidal substances against which microorganisms cannot become resistant. The aim of this study was to synthesize inorganic-organic nanohybrids and obtain materials with antimicrobial effects. Chitosan (CS) was deposited on nanocomposite carriers such as calcium oxide with titanium dioxide (CaO-TiO2), magnesium oxide with titanium dioxide (MgO-TiO2) and copper(II) oxide with titanium dioxide (CuO-TiO2). The efficiency of the process was examined at varying concentrations of chitosan and temperature. The parameters for nanohybrids synthesis were selected based on the highest amount of nano-chitosan deposited on the nanohybrids-for each carrier, the process conditions were as follows: chitosan solution at 5 g l-1and 20 °C. The materials were obtained using these parameters and were used for microbiological tests againstE. coliATCC 25922,S. aureusATCC 25923 andC. albicansATCC 10231. The growth inhibitory activity of the obtained materials was qualitatively defined. These results suggest that the synthesized nanohybrids and nanocomposites exhibit biostatic action. The material with the broadest effect was the CuO-TiO2-CS hybrid, which had biostatic properties against all tested strains at a minimal concentration of 1250µg ml-1. Further research is required to find eco-friendly, non-toxic, and more effective antimicrobials with a broad action to prevent the acquisition of resistance.


Assuntos
Anti-Infecciosos , Quitosana , Nanocompostos , Nanopartículas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Óxidos , Titânio/farmacologia
9.
Chem Biodivers ; 19(8): e202200441, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35820029

RESUMO

Avocadoes are a rich source of nutrients and nutraceuticals that preserve human health. Nevertheless, this fruit is susceptible to phytopathogen infection during the postharvest period causing severe economic losses. Herein, we report on the in situ antifungal assessment of biodegradable films impregnated with the essential oil of Cinnamomum verum (CvEO) as natural fungistatic coatings to extend postharvest quality of Hass avocadoes (Persea americana cv. Hass). These coatings were evaluated on fruits previously infected with a native strain of Fusarium verticillioides. The cytotoxic assessment of CvEO on F. verticillioides revealed a minimum inhibitory concentration of 0.3±0.0 g L-1 whereas its chemical profiling showed (E)-cinnamaldehyde (45.9 %) 1,3,8-p-menthatriene (7.9 %) and linalool (6.8 %) as the major bioactive compounds. Four coatings (FC1-FC4) were made using chitosan (1 %) and a diverse quantity of CvEO (0.4-1.3 % w/v). The physicochemical properties demonstrated that the films FC3 and FC4 have the optimal characteristics of a food coating. Avocadoes preserved with the films FC3 and FC4 substantially kept (p<0.01) fruit firmness and the nutraceutical content of infected avocados at least for 21 d. The results of the present investigation suggest that our hybrid materials can conserve basic nutritional parameters such as fiber, protein, reducing sugars, as well as the content of unsaturated fatty acids which are the main nutraceuticals of this fruit.


Assuntos
Fusariose , Óleos Voláteis , Persea , Cinnamomum zeylanicum , Suplementos Nutricionais , Frutas/química , Humanos , Óleos Voláteis/química , Persea/química
10.
Dermatol Ther ; 34(4): e14959, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857337

RESUMO

The South-Asian epidemic of anti-fungal therapeutic failures (AFTF) is on the rise. Although many demographic, environmental, and socioeconomic factors have been implicated in the genesis of this problem, two pharmacological issues warrant attention. While detailed discussions on the role of topical corticosteroid (TCS) in the changing landscape of the superficial mycotic infections in this region have been making headlines, another equally, rather more important pharmacological factor seems to have been undermined by the hype around TCS. The fastidious pharmacokinetic properties and related practical aspects of the triazole group of oral and topical antifungals, especially oral itraconazole seem to contribute significantly to the persistence of AFTF epidemic. In this paper, we shall discuss the broad aspects of the spectral precariousness of oral triazole antifungals with special emphasis to itraconazole, a concept known as the "azole menace" in the overall pathogenesis and tenacity of the AFTF epidemic.


Assuntos
Dermatomicoses , Epidemias , Antifúngicos/efeitos adversos , Azóis , Dermatomicoses/diagnóstico , Dermatomicoses/tratamento farmacológico , Dermatomicoses/epidemiologia , Humanos , Itraconazol
11.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834000

RESUMO

Enniatins are mycotoxins produced by Fusarium species contaminating cereals and various agricultural commodities. The co-occurrence of these mycotoxins in large quantities with other mycotoxins such as trichothecenes and the possible synergies in toxicity could lead to serious food safety problems. Using the agar dilution method, Ammoides pusilla was selected among eight Tunisian plants for the antifungal potential of its essential oil (EO) on Fusarium avenaceum mycelial growth and its production of enniatins. Two EO batches were produced and analyzed by GC/MS-MS. Their activities were measured using both contact assays and fumigant tests (estimated IC50 were 0.1 µL·mL-1 and 7.6 µL·L-1, respectively). The A. pusilla EOs and their volatiles inhibited the germination of spores and the mycelial growth, showing a fungistatic but not fungicidal activity. The accumulation of enniatins was also significantly reduced (estimated IC50 were 0.05 µL·mL-1 for the contact assays and 4.2 µL·L-1 for the fumigation assays). The most active batch of EO was richer in thymol, the main volatile compound found. Thymol used as fumigant showed a potent fungistatic activity but not a significant antimycotoxigenic activity. Overall, our data demonstrated the bioactivity of A. pusilla EO and its high potential to control F. avenaceum and its enniatins production in agricultural commodities.


Assuntos
Apiaceae/química , Depsipeptídeos/biossíntese , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Micotoxinas/biossíntese , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Timol/química , Timol/farmacologia
12.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 127-132, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583777

RESUMO

The aim of this study was to evaluate the antifungal and modulatory potential of the Ziziphus joazeiro bark and leaf extracts, both in isolation and in association with fluconazole, against resistant species from the Candida genus. Antifungal assays were used to determine the half maximal inhibitory concentration (IC50) of the extract in isolation and in combination with fluconazole using the broth microdilution method and spectrophotometric readings, followed by verification of the minimum fungicidal concentration by solid medium subculture. According to the cell viability curve, both extracts inhibited fungal growth in a concentration dependent manner, in addition to showing inhibitory concentrations similar to fluconazole. However, the extracts behaved in a fungistatic manner with minimum inhibitory concentration > 8.19 mg/mL and IC50 values ranging from 0.450 mg/mL to 9 mg/mL. The minimum inhibitory concentration for both extracts decreased when in combination with fluconazole, with the AEL standing out against Candida albicans URM 4387, displaying an IC50 equal to that of fluconazole (0.002 mg/mL). Nevertheless, fluconazole antagonism was observed against the tested strains. Overall, the evaluation of both extracts against Candida spp. presented inhibitory concentration values greater than fluconazole. Moreover, despite these being chemically complex crude extracts, they did demonstrate antifungal effects and properties that concur with their ethno-biological aspect.


Assuntos
Antifúngicos/farmacologia , Metaboloma , Compostos Fitoquímicos/farmacologia , Ziziphus/metabolismo , Antifúngicos/química , Candida/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fluconazol/farmacologia , Concentração Inibidora 50 , Viabilidade Microbiana/efeitos dos fármacos , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Água
13.
Bioorg Chem ; 99: 103841, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32325335

RESUMO

A series of thiadiazino[5,6-b]quinoxaline and thiazolo[4,5-b]quinoxaline derivatives was designed and synthetized from the reaction of 2,3-dichloro-6-(morpholinosulfonyl)quinoxaline (2) with thiosemicarbazide or thiocarbohydrazide and thiourea derivatives to give nineteen quinoxaline derivatives 3-16. All the synthesized compounds were evaluated for in vitro antimicrobial potential against various bacteria and fungi strains that showed considerable antimicrobial activity against tested microorganisms. The most potent compounds 2, 7, 9, 10, 12 and 13c were exhibited bactericidal activity, in addition to fungistatic activity by dead live assay. Moreover, these compounds showed a significant result against all multi-drug resistance (MDRB) used especially compound 13c that displayed the best results with MICs of MDRB (1.95, 3.9, 2.6, 3.9 µg/mL) for stains used in this study, compared with Norfloxacin (1.25, 0.78, 1.57, 3.13 µg/mL). Also, cytotoxicity on normal cell (Vero cells ATCC CCL-81) by MTT assay was performed with lower toxicity results. Additionally, morphological studies, immunostimulatory potency and DNA gyrase inhibition assay of most active compounds was done. A molecular docking study has also been carried out to support the effective binding of the most promising compounds at the active site of the target enzyme S. aureus DNA gyrase (2XCT).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , DNA Girase/metabolismo , Quinoxalinas/farmacologia , Tiadiazinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Desenho de Fármacos , Fusarium/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinoxalinas/química , Relação Estrutura-Atividade , Tiadiazinas/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Vero
14.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167439

RESUMO

A series of novel 4-aminobenzofuroxan derivatives containing aromatic/aliphatic amines fragments was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan. The quantum chemistry calculations were performed to identify the factors affecting the regioselectivity of the reaction. The formation of 4-substituted isomer is favored both by its greater stability and the lower activation barrier. Antimicrobial activity of the obtained compounds has been evaluated and some of them were found to suppress effectively bacterial biofilm growth. Fungistatic activity of 4-aminobenzofuroxans were tested on two genetically distinct isolates of M. nivale. The effect of some benzofuroxan derivatives is likely to be more universal against different varieties of M. nivale compared with benzimidazole and carbendazim. Additionally, their anti-cancer activity in vitro has been tested. 4-aminofuroxans possessing aniline moiety showed a high selectivity towards MCF-7 and M-HeLa tumor cell lines. Moreover, they exhibit a significantly lower toxicity towards normal liver cells compared to Doxorubicin and Tamoxifen. Thus, benzofuroxans containing aromatic amines fragments in their structure are promising candidates for further development both as anti-cancer and anti-microbial agents.


Assuntos
Anti-Infecciosos/síntese química , Antineoplásicos/síntese química , Benzoxazóis/síntese química , Descoberta de Drogas , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzoxazóis/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Drogas em Investigação/síntese química , Drogas em Investigação/química , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Molecules ; 25(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936864

RESUMO

The aim of the study was to determine the relationship between the chemical composition of eight commercial essential oils (EsO) (garlic, grapefruit, lemon grass, tea tree, thyme, verbena, cajeput, and Litsea cubeba) and their fungistatic activity in relation to four species of Fusarium: F. avenaceum, F. culmorum, F. graminearum, and F. oxysporum. The species identification of Fusarium isolates was confirmed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. The determination of qualitative and quantitative chemical composition of the EsO was carried out using the gas chromatography-mass spectrometry (GC-MS) method. The fungistatic activity of EsO was assessed by using the method of poisoned substrates. The data were compiled in the STATISTICA 13.0 program. The chemical composition of the tested oils varied; the dominant fraction, except for grapefruit and garlic oils, were monoterpenoids. The greatest similarity to the action of the synthetic pesticide Funaben T was found in four oils, i.e., thyme, lemongrass, verbena, and Litsea cubeba. The studies showed that F. oxysporum and F. avenaceum were characterized by a higher resistance to low oil concentrations, and F. culmorum and F. graminearum by sensitivity. The fungicidal activity of two EsO-dominant monoterpenoids-thymol and citral-has been confirmed.


Assuntos
Antifúngicos , Grão Comestível/química , Fusarium/crescimento & desenvolvimento , Óleos Voláteis , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Avaliação de Medicamentos , Fusarium/classificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
16.
Lasers Med Sci ; 34(7): 1457-1464, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30798389

RESUMO

This study investigated (i) the degradation effect of 405-nm blue light-emitting diode (LED) light irradiation on Candida albicans and C. glabrata biofilms formed on denture base resin and (ii) the effects of 405-nm blue LED light irradiation on the mechanical and surface characteristics of the resin. Polymethyl methacrylate denture base resin discs were prepared, and C. albicans or C. glabrata biofilms formed on the denture base resin discs. Each biofilm was irradiated with 405-nm blue LED light under a constant output power (280 mW/cm2) for different times in a moisture chamber with 100% relative humidity. Postirradiation, each biofilm was analyzed using a colony-forming unit assay, fluorescence microscopy, and scanning electron microscopy (SEM). Parallelepiped specimens of acrylic resin were prepared, and changes in their flexural strength (FS), flexural modulus (FM), and surface roughness (Ra) preirradiation and postirradiation with 405-nm blue LED light were evaluated. Irradiation for 30 min completely inhibited colony formation in both Candida species. Fluorescence microscopy showed that almost all Candida cells were killed because of irradiation. SEM images showed various cell damage patterns, such as wrinkles, shrinkage, and cell surface damage. An increase in FS was noted postirradiation, but no significant changes were observed in FM and Ra preirradiation and postirradiation. In conclusion, irradiation with 405-nm blue LED light induces degradation of C. albicans and C. glabrata biofilms on denture base resin, even in the absence of photosensitizers, without resin surface deterioration.


Assuntos
Resinas Acrílicas/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Bases de Dentadura , Luz , Polimetil Metacrilato/farmacologia , Candida/ultraestrutura , Candida albicans/efeitos dos fármacos , Candida albicans/ultraestrutura , Candida glabrata/efeitos dos fármacos , Candida glabrata/ultraestrutura , Contagem de Colônia Microbiana , Fármacos Fotossensibilizantes/farmacologia , Propriedades de Superfície
17.
Molecules ; 24(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277425

RESUMO

The reactions of 3-isoselenocyanato-2,2,5,5-tetramethylpyrrolidine-1-oxyl, 3-isoselenocyanatomethyl-2,2,5,5-tetramethyl-3-pyrrolidine-1-oxyl, and 4-isoselenocyanato-2,2,6,6-tetramethylpiperidine-1-oxyl with selected amines and alcohols give the corresponding novel nitroxyl selenoureas and selenocarbamates, all bearing a nitroxyl moiety. Synthesized selenoureas and selenocarbamates show significant activity against pathogenic fungi and bacteria. In contrast to piperidine nitroxides, pyrrolidine, five-membered nitroxyl selenoureas and selenocarbamates show excellent antifungal and antibacterial activity against pathogenic fungi and bacteria, respectively.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Carbamatos/farmacologia , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/farmacologia , Compostos Organosselênicos/farmacologia , Ureia/análogos & derivados , Bactérias/efeitos dos fármacos , Carbamatos/síntese química , Carbamatos/química , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óxidos de Nitrogênio/química , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ureia/síntese química , Ureia/química , Ureia/farmacologia
18.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400225

RESUMO

Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Echinochloa/química , Hidroxiprolina/química , Sementes/química , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana
19.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747483

RESUMO

Division of labour in eusocial insects is characterized by efficient communication systems based on pheromones. Among such insects, termites have evolved specialized sterile defenders, called soldiers. Because they are incapable of feeding themselves, it has been suggested that soldiers are sustained by workers and emit the pheromone arresting workers. However, such a soldier pheromone has not been identified in any termite species, and the details of the soldier-worker interaction remain to be explored. Here, we identified a soldier-specific volatile sesquiterpene as a worker arrestant, which also acts as a primer pheromone regulating soldier differentiation and fungistatic agent in a termite Reticulitermes speratus Chemical analyses revealed that (-)-ß-elemene is the major component of soldier extract, and its authentic standard exhibited arrestant activity to workers and inhibited the differentiation from workers to soldiers. This compound also showed fungistatic activity against entomopathogenic fungi. These suggest that (-)-ß-elemene secreted by soldiers acts not only as a worker arrestant but also as one component of inhibitory primer pheromone and an anti-pathogenic agent. Our study provides novel evidence supporting the multi-functionality of termite soldier pheromone and provides new insights into the role of soldiers and the evolutionary mechanisms of pheromone compounds.


Assuntos
Isópteros/química , Feromônios/química , Sesquiterpenos/química , Animais , Antifúngicos
20.
Lett Appl Microbiol ; 62(1): 96-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26544541

RESUMO

UNLABELLED: In this study, yeasts and lactic acid bacteria (LAB) were isolated from coffee fruits and identified via biochemical and molecular approaches. The isolates represented the Pichia, Debaryomyces, Candida, Clavispora, Yarrowia, Sporobolomyces, Klyveromyces, Torulaspora and Lactobacillus genera. Four isolates, namely Pichia fermentans LPBYB13, Sporobolomyces roseus LPBY7E, Candida sp. LPBY11B and Lactobacillus brevis LPBB03, were found to have the greatest antagonist activity against an ochratoxigenic strain of Aspergillus westerdijkiae on agar tests and were selected for further characterization. Applications of P. fermentans LPBYB13 in coffee cherries artificially contaminated with A. westerdijkiae showed efficacy in reducing ochratoxin A (OTA) content up to 88%. These results highlight that P. fermentans LPBYB13 fulfils the principle requirements of an efficient biological control of aflatoxigenic fungi in coffee beans and may be seen as a reliable candidate for further validation in field conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies based on microbial ecology and antagonistic interactions are important for the development of new strategies in controlling aflatoxin contamination of crops and are relevant to further biotechnological applications. This study shows that coffee fruit is a potential source for the isolation of microbial strains with antifungal ability. A new yeast strain, Pichia fermentans LPBYB13, showed efficacy in reducing growth and ochratoxin A production of Aspergillus westerdijkiae in coffee beans. Our results should encourage the use of this yeast strain on a large scale for biocontrol of aflatoxigenic fungi in coffee beans.


Assuntos
Aflatoxinas/biossíntese , Antifúngicos/isolamento & purificação , Aspergillus/crescimento & desenvolvimento , Agentes de Controle Biológico/isolamento & purificação , Café/microbiologia , Contaminação de Alimentos/prevenção & controle , Ocratoxinas/biossíntese , Agentes de Controle Biológico/metabolismo , Candida/isolamento & purificação , Candida/metabolismo , Frutas/microbiologia , Ácido Láctico/metabolismo , Levilactobacillus brevis/isolamento & purificação , Levilactobacillus brevis/metabolismo , Pichia/isolamento & purificação , Pichia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA