Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(2): e2123182120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598942

RESUMO

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.


Assuntos
Ritmo Gama , Interneurônios , Camundongos , Animais , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Junções Comunicantes , Parvalbuminas , Plasticidade Neuronal/fisiologia
2.
J Bioenerg Biomembr ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102102

RESUMO

This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.

3.
Epilepsia ; 65(3): 687-697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279908

RESUMO

OBJECTIVE: Refractory epilepsy may have an underlying autoimmune etiology. Our aim was to assess the prevalence of neural autoantibodies in a multicenter national prospective cohort of patients with drug-resistant epilepsy undergoing epilepsy surgery utilizing comprehensive clinical, serologic, and histopathological analyses. METHODS: We prospectively recruited patients undergoing epilepsy surgery for refractory focal epilepsy not caused by a brain tumor from epilepsy surgery centers in the Czech Republic. Perioperatively, we collected cerebrospinal fluid (CSF) and/or serum samples and performed comprehensive commercial and in-house assays for neural autoantibodies. Clinical data were obtained from the patients' medical records, and histopathological analysis of resected brain tissue was performed. RESULTS: Seventy-six patients were included, mostly magnetic resonance imaging (MRI)-lesional cases (74%). Mean time from diagnosis to surgery was 21 ± 13 years. Only one patient (1.3%) had antibodies in the CSF and serum (antibodies against glutamic acid decarboxylase 65) in relevant titers; histology revealed focal cortical dysplasia (FCD) III (FCD associated with hippocampal sclerosis [HS]). Five patients' samples displayed CSF-restricted oligoclonal bands (OCBs; 6.6%): three cases with FCD (one with FCD II and two with FCD I), one with HS, and one with negative histology. Importantly, eight patients (one of them with CSF-restricted OCBs) had findings on antibody testing in individual serum and/or CSF tests that could not be confirmed by complementary tests and were thus classified as nonspecific, yet could have been considered specific without confirmatory testing. Of these, two had FCD, two gliosis, and four HS. No inflammatory changes or lymphocyte cuffing was observed histopathologically in any of the 76 patients. SIGNIFICANCE: Neural autoantibodies are a rare finding in perioperatively collected serum and CSF of our cohort of mostly MRI-lesional epilepsy surgery patients. Confirmatory testing is essential to avoid overinterpretation of autoantibody-positive findings.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical , Humanos , Estudos Prospectivos , Autoanticorpos , Prevalência , Epilepsia/epidemiologia , Epilepsia/cirurgia , Epilepsia/complicações , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/complicações , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/complicações , Estudos Retrospectivos
4.
Epilepsia ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110151

RESUMO

Epilepsy associated with high-titer glutamic acid decarboxylase 65 (GAD65) IgG is often refractory to immunotherapies and antiseizure medication. This study sought to determine the efficacy of vagus nerve stimulation (VNS) and surgical resection in patients with drug-resistant epilepsy associated with GAD65-IgG. We retrospectively identified 15 patients with drug-resistant epilepsy and high serum GAD65 antibody titers (>20 nmol·L-1) who underwent VNS implantation (n = 6), surgical resection (n = 7), or both (n = 2). A responder to VNS was defined as someone with a ≥50% reduction in seizure frequency, and a favorable surgical outcome was defined as Engel I-II. Of the eight patients who underwent VNS implantation, three (37.5%) were initially responders, but this was not sustained in two. Of the nine patients who underwent surgical resection, three (33.3%) had a favorable outcome; however, only one patient was seizure-free at last follow-up. Pathology was available in six patients, and only one had evidence of inflammation; this patient had seizure onset 1 year prior to surgery. Favorable seizure outcome correlated with older age at time of resective surgery, with a trend favoring later age of seizure onset. Taken together, surgical resection and VNS implantation may have limited efficacy in this patient population but can be considered in carefully selected cases.

5.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37507486

RESUMO

Opioid addiction is a global problem that has been exacerbated in the USA and Europe by the COVID-19 pandemic. The globus pallidus (GP) plays a prominent neurobiological role in the regulation of behaviour as an output station of the striato-pallidal system. GABAergic large projection neurons are the main neuronal type in the external (EGP) and internal (IGP) parts of the GP, where addiction-specific molecular and functional abnormalities occur. In these neurons, glutamate decarboxylase (GAD) with isoforms GAD 65 and 67 is a key enzyme in GABA synthesis, and experimental studies suggest GAD dysregulation in the GP of heroin addicts. Our study, which was performed on paraffin-embedded brains from the Magdeburg Brain Bank, aimed to investigate abnormalities in the GABAergic function of large GP neurons by densitometric evaluation of their GAD 65/67-immunostained thick dendrites. The study revealed a bilaterally decreased fibres density in the EGP paralleled by the increase in the IGP in 11 male heroin addicts versus 11 healthy controls (significant U-test P values). The analysis of confounding variables found no interference of age, brain volume, and duration of formalin fixation with the results. Our findings suggest a dysregulation of GABAergic activity in the GP of heroin addicts, which is consistent with experimental data from animal models and plays potentially a role in the disturbed function of basal ganglia circuit in opioid addiction.


Assuntos
Globo Pálido , Transtornos Relacionados ao Uso de Opioides , Animais , Masculino , Humanos , Heroína , Pandemias , Gânglios da Base
6.
Artigo em Inglês | MEDLINE | ID: mdl-38980335

RESUMO

Opioid addiction is a global problem, causing the greatest health burden among drug use disorders, with opioid overdose deaths topping the statistics of fatal overdoses. The multifunctional anterior insular cortex (AIC) is involved in inhibitory control, which is severely impaired in opioid addiction. GABAergic interneurons shape the output of the AIC, where abnormalities have been reported in individuals addicted to opioids. In these neurons, glutamate decarboxylase (GAD) with its isoforms GAD 65 and 67 is a key enzyme in the synthesis of GABA, and research data point to a dysregulation of GABAergic activity in the AIC in opioid addiction. Our study, which was performed on paraffin-embedded brains from the Magdeburg Brain Bank, aimed to investigate abnormalities in the GABAergic function of the AIC in opioid addiction by densitometric evaluation of GAD 65/67-immunostained neuropil. The study showed bilaterally increased neuropil density in layers III and V in 13 male heroin-addicted males compared to 12 healthy controls, with significant U-test P values for layer V bilaterally. Analysis of confounding variables showed that age, brain volume and duration of formalin fixation did not confound the results. Our findings suggest a dysregulation of GABAergic activity in the AIC in opioid addiction, which is consistent with experimental data from animal models and human neuroimaging studies.

7.
Neurol Neurochir Pol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093166

RESUMO

AIM OF STUDY: Glutamate decarboxylase (GAD) enzyme can be a target intracellular antigen in autoimmune focal epilepsy. GAD65 antibody is in found patients diagnosed with drug-refractory temporal lobe epilepsy (TLE). We explore the clinical features of the disease and therapeutic options. MATERIAL AND METHODS: We present the cases of four TLE patients, two of them with type 1 diabetes. All of them were drug-resistant and therefore underwent presurgical evaluation, which revealed GAD65 antibody positivity. We discuss the four GAD65 antibody positive temporal lobe epilepsy patients' electroclinical data, the treatments, and their effectiveness. RESULTS: One of them became seizure-free after right anterior temporal lobe resection, two of them did not show significant improvement with immunmodulatory agents, and the fourth patient with the shortest duration of disease had significant improvement in seizure status and normalisation of cognitive status with IVIg therapy. CONCLUSIONS AND CLINICAL IMPLICATIONS: Our cases show that the earlier a GAD65 antibody is detected, the greater the chance of achieving seizure freedom or improvements in both seizure and cognitive status with immunomodulatory agents. However, in some cases, surgery may also bring seizure freedom, but with a risk of cognitive deterioration.

8.
Diabetologia ; 66(8): 1460-1471, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301794

RESUMO

AIMS/HYPOTHESIS: Islet autoimmunity may progress to adult-onset diabetes. We investigated whether circulating odd-chain fatty acids (OCFA) 15:0 and 17:0, which are inversely associated with type 2 diabetes, interact with autoantibodies against GAD65 (GAD65Ab) on the incidence of adult-onset diabetes. METHODS: We used the European EPIC-InterAct case-cohort study including 11,124 incident adult-onset diabetes cases and a subcohort of 14,866 randomly selected individuals. Adjusted Prentice-weighted Cox regression estimated HRs and 95% CIs of diabetes in relation to 1 SD lower plasma phospholipid 15:0 and/or 17:0 concentrations or their main contributor, dairy intake, among GAD65Ab-negative and -positive individuals. Interactions between tertiles of OCFA and GAD65Ab status were estimated by proportion attributable to interaction (AP). RESULTS: Low concentrations of OCFA, particularly 17:0, were associated with a higher incidence of adult-onset diabetes in both GAD65Ab-negative (HR 1.55 [95% CI 1.48, 1.64]) and GAD65Ab-positive (HR 1.69 [95% CI 1.34, 2.13]) individuals. The combination of low 17:0 and high GAD65Ab positivity vs high 17:0 and GAD65Ab negativity conferred an HR of 7.51 (95% CI 4.83, 11.69), with evidence of additive interaction (AP 0.25 [95% CI 0.05, 0.45]). Low dairy intake was not associated with diabetes incidence in either GAD65Ab-negative (HR 0.98 [95% CI 0.94, 1.02]) or GAD65Ab-positive individuals (HR 0.97 [95% CI 0.79, 1.18]). CONCLUSIONS/INTERPRETATION: Low plasma phospholipid 17:0 concentrations may promote the progression from GAD65Ab positivity to adult-onset diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Adulto , Ácidos Graxos , Fosfolipídeos , Estudos de Coortes , Incidência , Autoanticorpos , Glutamato Descarboxilase
9.
Neurobiol Dis ; 183: 106165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230180

RESUMO

Anxiety disorders have been linked to a disbalance of excitation and inhibition in a network of brain structures comprising frontal cortical regions, the amygdala and the hippocampus, among others. Recent imaging studies suggest sex differences in the activation of this anxiety network during the processing of emotional information. Rodent models with genetically altered ϒ-amino butyric acid (GABA) neurotransmission allow studying the neuronal basis of such activation shifts and their relation to anxiety endophenotypes, but to date sex effects have rarely been addressed. Using mice with a null mutation of the GABA synthetizing enzyme glutamate decarboxylase 65 (GAD65-/-), we started to compare anxiety-like behavior and avoidance in male vs. female GAD65-/- mice and their wildtype littermates. In an open field, female GAD65-/- mice displayed increased activity, while male GAD65-/- mice showed an increased adaptation of anxiety-like behavior over time. GAD65-/- mice of both sexes had a higher preference for social interaction partners, which was further heightened in male mice. In male mice higher escape responses were observed during an active avoidance task. Together, female mice showed more stable emotional responses despite GAD65 deficiency. To gain insights into interneuron function in network structures controlling anxiety and threat perception, fast oscillations (10-45 Hz) were measured in ex vivo slice preparations of the anterior cingulate cortex (ACC). GAD65-/- mice of both sexes displayed increased gamma power in the ACC and a higher density of PV-positive interneurons, which are crucial for generating such rhythmic activity. In addition, GAD65-/- mice had lower numbers of somatostatin-positive interneurons in the basolateral amygdala and in the dorsal dentate gyrus especially in male mice, two key regions important for anxiety and active avoidance responses. Our data suggest sex differences in the configuration of GABAergic interneurons in a cortico-amygdala-hippocampal network controlling network activity patterns, anxiety and threat avoidance behavior.


Assuntos
Glutamato Descarboxilase , Caracteres Sexuais , Camundongos , Feminino , Masculino , Animais , Camundongos Knockout , Glutamato Descarboxilase/genética , Ansiedade/genética , Transtornos de Ansiedade , Interneurônios/fisiologia , Ácido gama-Aminobutírico/farmacologia
10.
Neurobiol Dis ; 184: 106221, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414365

RESUMO

Autoimmune-mediated encephalitis syndromes are increasingly being recognized as important clinical entities. They need to be thought of as differential diagnosis in any patient presenting with fast-onset psychosis or psychiatric problems, memory deficits or other cognitive problems, including aphasias, as well as seizures or motor automatisms, but also rigidity, paresis, ataxia or dystonic / parkinsonian symptoms. Diagnosis including imaging and CSF search for antibodies needs to be fast, as progression of these inflammatory processes is often causing scarring of brain tissue, with hypergliosis and atrophy. As these symptoms show, the autoantibodies present in these cases appear to act within the CNS. Several of such antibodies have by now been identified such as IgG directed against NMDA-receptors, AMPA receptors, GABAA and GABAB receptors, and voltage gated potassium channels and proteins of the potassium channel complex (i.e. LGI1 and CASPR2). These are neuropil / surface antigens where antibody interaction can well be envisaged to cause dysfunction of the target protein, including internalization. Others, such as antibodies directed against GAD65 (an intracellular enzyme responsible for GABA-synthesis from glutamate), are discussed to constitute epiphenomena, but not causal agents in disease progression. This review will focus on the current knowledge of antibody interaction mechanisms, especially discussing cellular excitability changes and synaptic interactions in hippocampal and other brain networks. One challenge in this context is to find viable hypotheses for the emergence of both, hyperexcitability and seizures, and presumably reduced synaptic plasticity and underlying cognitive dysfunction.


Assuntos
Autoimunidade , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Autoanticorpos , Convulsões , Ácido gama-Aminobutírico
11.
FASEB J ; 36(2): e22123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34972242

RESUMO

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Assuntos
Glutamato Descarboxilase/deficiência , Palato/embriologia , Prosencéfalo/embriologia , Retina/embriologia , Animais , Glutamato Descarboxilase/metabolismo , Ratos , Ratos Mutantes
12.
Cerebellum ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948023

RESUMO

The "hot cross bun" sign (HCBs) is a cruciform hyperintensity on T2-weighted imaging within the pons initially found in patients diagnosed as multiple system atrophy. However, recent findings have broadened the disease spectrum presented with HCBs. Here is a case report at an academic medical center. Cerebral magnetic resonance imaging (MRI), electroneuromyography, serum, and CSF analysis were performed. Literature is comprehensively reviewed. We investigated a woman presented with blurred speech and cerebellar ataxia. Her MRI showed the vertical line of HCBs 2 weeks after disease onset and gradually enhanced, presenting as an intact HCBs in a year. Glutamic acid decarboxylase 65-kDa isoform (GAD65) antibody IgG was detected in serum and CSF. The patient was diagnosed as GAD65 associated cerebellar ataxia and treated with corticosteroid and rituximab. We found 6 previously reported autoimmune cerebellar ataxia patients with HCBs. Anti-KLHL-11, anti-Homer-3, anti-Ri, and anti-Amphiphysin were associated. All patients had cerebellar ataxia with other neurological symptoms. Five patients were diagnosed with tumor. First-line immunotherapy including corticosteroid, intravenous immunoglobulin, and plasma exchange for most patients was unsatisfied. This case highlights the importance of considering GAD65 IgG evaluation in patients with progressive cerebellar syndrome and HCBs. Early diagnosis and therapy are challenging but imperative. Further studies are required in regard to therapeutic management.

13.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524407

RESUMO

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Nociceptores , Animais , Técnicas de Transferência de Genes , Camundongos , Neuralgia/etiologia , Neuralgia/terapia , Células do Corno Posterior , Medula Espinal , Corno Dorsal da Medula Espinal , Suínos
14.
Proc Natl Acad Sci U S A ; 117(21): 11744-11752, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404418

RESUMO

Auditory experience drives neural circuit refinement during windows of heightened brain plasticity, but little is known about the genetic regulation of this developmental process. The primary auditory cortex (A1) of mice exhibits a critical period for thalamocortical connectivity between postnatal days P12 and P15, during which tone exposure alters the tonotopic topography of A1. We hypothesized that a coordinated, multicellular transcriptional program governs this window for patterning of the auditory cortex. To generate a robust multicellular map of gene expression, we performed droplet-based, single-nucleus RNA sequencing (snRNA-seq) of A1 across three developmental time points (P10, P15, and P20) spanning the tonotopic critical period. We also tone-reared mice (7 kHz pips) during the 3-d critical period and collected A1 at P15 and P20. We identified and profiled both neuronal (glutamatergic and GABAergic) and nonneuronal (oligodendrocytes, microglia, astrocytes, and endothelial) cell types. By comparing normal- and tone-reared mice, we found hundreds of genes across cell types showing altered expression as a result of sensory manipulation during the critical period. Functional voltage-sensitive dye imaging confirmed GABA circuit function determines critical period onset, while Nogo receptor signaling is required for its closure. We further uncovered previously unknown effects of developmental tone exposure on trajectories of gene expression in interneurons, as well as candidate genes that might execute tonotopic plasticity. Our single-nucleus transcriptomic resource of developing auditory cortex is thus a powerful discovery platform with which to identify mediators of tonotopic plasticity.


Assuntos
Córtex Auditivo , Núcleo Celular/metabolismo , RNA , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Camundongos , Receptores Nogo/genética , Receptores Nogo/metabolismo , RNA/análise , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos
15.
Bull Exp Biol Med ; 176(2): 232-234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194067

RESUMO

The expression of glutamate decarboxylase GAD65/67, an enzyme of GABA synthesis, and vesicular glutamate transporter 2 (VGLUT2) in the arcuate, dorsomedial, and ventromedial nuclei of the hypothalamus of young (3 months), adult (12 months), and old male rats (24 months) was studied by Western blotting. In old rats, an increase in the expression of GAD65/67 in the arcuate and dorsomedial, VGLUT2 in the arcuate, dorsomedial, and ventromedial nuclei was observed. Thus, an increase in opposite processes of inhibition and excitation is observed in the hypothalamic nuclei during aging.


Assuntos
Hipotálamo , Neurônios , Animais , Masculino , Ratos , Envelhecimento/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo
16.
Eur J Neurosci ; 55(9-10): 2142-2153, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33342018

RESUMO

Early life stress is an important vulnerability factor for the development of anxiety disorders, depression and late-onset cognitive decline. Recently, we demonstrated that juvenile stress (JS) lastingly enhanced long-term potentiation via reduction of steady-state glutamine synthetase mRNA expression and the associated dysregulation of the astrocytic glutamate-glutamine cycle in the rat ventral CA1. We now investigated the regulation of steady-state mRNA expression of neuronal gene products that determine GABAergic and glutamatergic neurotransmission in layers of the ventral and dorsal CA1 after JS. We further studied their interaction with stress in young adult age (AS) to address their putative role in psychopathology development. Strikingly, mRNA levels of the glutamic acid decarboxylase (GAD) isoforms GAD65 and of the GABA-A receptor α2 (Gabra2) were increased after single JS or AS, but not after combined JS/AS stress experience. In fact, JS/AS resulted in layer-specific reduction of Gabra2 and also of Gabra1 mRNA levels in the ventral CA1. Furthermore, GAD65 and Gabra2 mRNAs were correlated with glutamatergic AMPA and NMDA receptor subunit mRNAs after single JS and AS, but not after combined JS/AS. Together, these data indicate a loss of allostatic regulation of steady-state mRNA levels of key GABAergic components that may result in a dysregulation of excitation/ inhibition balance in the ventral CA1 upon dual stress exposure. Finally, individual differences in local glucocorticoid receptor mRNA expression may contribute to this regulation.


Assuntos
Hipocampo , Transtornos Mentais , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos
17.
J Neuroinflammation ; 19(1): 152, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705957

RESUMO

BACKGROUND: Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. METHODS: Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. RESULTS: LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. CONCLUSIONS: These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety.


Assuntos
Ansiedade/metabolismo , Glutamato Descarboxilase/metabolismo , Lipopolissacarídeos , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Ansiedade/patologia , Glucocorticoides/farmacologia , Glutamato Descarboxilase/genética , Hipocampo/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Receptores de GABA/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Ácido gama-Aminobutírico/metabolismo
18.
Int J Exp Pathol ; 103(4): 140-148, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35246889

RESUMO

Islet autoantibodies, including autoantibodies directed against the 65kDa isoform of glutamate decarboxylase (GAD65Ab), are present in the majority of patients with newly diagnosed type 1 diabetes (T1D). Whereas these autoantibodies are historically viewed as an epiphenomenon of the autoimmune response with no significant pathogenic function, we consider in this study the possibility that they impact the major islet function, namely glucose-stimulated insulin secretion. Two human monoclonal GAD65Ab (GAD65 mAb) (b78 and b96.11) were investigated for uptake by live rat beta cells, subcellular localization and their effect on glucose-stimulated insulin secretion. The GAD65 mAbs were internalized by live pancreatic beta cells, where they localized to subcellular structures in an epitope-specific manner. Importantly, GAD65 mAb b78 inhibited, while GAD65 mAb b96.11 enhanced, glucose-stimulated insulin secretion (GSIS). These opposite effects on GSIS rule out non-specific effects of the antibodies and suggest that internalization of the antibody leads to epitope-specific interaction with intracellular machinery regulating insulin granule release. The most likely explanation for the alteration of GSIS by GAD65 Abs is via changes in GABA release due to inhibition or change in GAD65 enzyme activity. This is the first report indicating an active role of GAD65Ab in the pathogenesis of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Glutamato Descarboxilase , Animais , Anticorpos Monoclonais/farmacologia , Autoanticorpos/farmacologia , Epitopos , Glucose/farmacologia , Glutamato Descarboxilase/química , Glutamato Descarboxilase/metabolismo , Secreção de Insulina , Ratos
19.
Cerebellum ; 21(4): 573-591, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35020135

RESUMO

Major advances in our knowledge concerning autoimmune and paraneoplastic cerebellar ataxias have occurred in the last 20 years. The discovery of several neural antibodies represents an undeniable contribution to this field, especially those serving as good biomarkers of paraneoplastic neurological syndromes and those showing direct pathogenic effects. Yet, many patients still lack detectable or known antibodies, and also many antibodies have only been reported in few patients, which makes it difficult to define in detail their clinical value. Nevertheless, a notable progress has additionally been made in the clinical characterization of patients with the main neural antibodies, which, although typically present with a subacute pancerebellar syndrome, may also show either hyperacute or chronic onsets that complicate the differential diagnoses. However, prodromal and transient features could be useful clues for an early recognition, and extracerebellar involvement may also be highly indicative of the associated antibody. Moreover, important advances in our understanding of the pathogenesis of cerebellar ataxias include the description of antibody effects, especially those targeting cell-surface antigens, and first attempts to isolate antigen-specific T-cells. Furthermore, genetic predisposition seems relevant, although differently involved according to cancer association, with particular HLA observed in non-paraneoplastic cases and genetic abnormalities in the tumor cells in paraneoplastic ones. Finally, immune checkpoint inhibitors used as cancer immunotherapy may rarely induce cerebellar ataxias, but even this undesirable effect may in turn serve to shed some light on their physiopathology. Herein, we review the principal novelties of the last 20 years regarding autoimmune and paraneoplastic cerebellar ataxias.


Assuntos
Ataxia Cerebelar , Autoanticorpos , Ataxia Cerebelar/diagnóstico , Humanos
20.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498879

RESUMO

Amino acid decarboxylases convert amino acids into different biogenic amines which regulate diverse biological processes. Therefore, identifying the substrates of amino acid decarboxylases is critical for investigating the function of the decarboxylases, especially for the new genes predicted to be amino acid decarboxylases. In the present work, we have established a simple and efficient method to identify the substrates and enzymatic activity of amino acid decarboxylases based on LC-MS methods. We chose GAD65 and AADC as models to validate our method. GAD65 and AADC were expressed in HEK 293T cells and purified through immunoprecipitation. The purified amino acid decarboxylases were subjected to enzymatic reaction with different substrate mixtures in vitro. LC-MS analysis of the reaction mixture identified depleted or accumulated metabolites, which corresponded to candidate enzyme substrates and products, respectively. Our method successfully identified the substrates and products of known amino acid decarboxylases. In summary, our method can efficiently identify the substrates and products of amino acid decarboxylases, which will facilitate future amino acid decarboxylase studies.


Assuntos
Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Descarboxilases de Aminoácido-L-Aromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA