Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Eur J Neurosci ; 60(4): 4536-4551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978299

RESUMO

During development, embryos and foetuses may be exposed to maternally ingested antiseizure medications (ASM), valproate and lamotrigine, essential in some patients to control their epilepsy symptoms. Often, the two drugs are co-administered to reduce required doses of valproate, a known potential teratogen. This study used Genetic Absence Epilepsy Rat from Strasbourg to evaluate transfer of valproate and lamotrigine across late gestation placenta and their entry into cerebrospinal fluid (CSF) and brain of developing rats, in mono- and combination therapies. Animals at embryonic day (E) 19, postnatal day (P) 0, 4 and 21, and adults were administered valproate (30 mg/kg) or lamotrigine (6 mg/kg) with their respective [3H]-tracers, either alone or in combination. In chronic experiments, females consumed valproate-containing diet from 2 weeks prior to mating until offspring were used at E19 and P0. Drugs were injected 30 min before blood, CSF and brain samples were collected from terminally anaesthetised animals. Radioactivity in samples was measured. In acute monotherapy brain entry of valproate was higher in foetal than postnatal animals, correlating with its plasma protein binding. Brain entry of lamotrigine was not age-dependent. Combination therapy enhanced entry of lamotrigine into the adult brain but had no effects on brain and CSF entry of valproate. Following chronic valproate exposure, placental transfer of valproate decreased in combination therapy; however, foetal brain entry increased. Results suggest that during pregnancy, the use of combination therapy of valproate and lamotrigine may mitigate overall foetal exposure to valproate but potential risks to foetal brain development are less clear.


Assuntos
Anticonvulsivantes , Encéfalo , Epilepsia Tipo Ausência , Lamotrigina , Placenta , Triazinas , Ácido Valproico , Animais , Feminino , Gravidez , Anticonvulsivantes/administração & dosagem , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Ratos , Placenta/metabolismo , Placenta/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Triazinas/administração & dosagem , Troca Materno-Fetal , Masculino
2.
Epilepsia ; 65(2): e20-e26, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031503

RESUMO

The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) regulatory proteins (TARPs), γ2 (stargazin), γ3, γ4, γ5, γ7, and γ8, are a family of proteins that regulate AMPAR trafficking, expression, and biophysical properties that could have a role in the development of absence seizures. Here, we evaluated the expression of TARPs and AMPARs across the development of epilepsy in the genetic absence epilepsy rats from Strasbourg (GAERS) model of idiopathic generalized epilepsy (IGE) with absence seizures. Pre-epileptic (7-day-old), early epileptic (6-week-old), and chronically epileptic (16-week-old) GAERS, and age-matched male nonepileptic control rats (NEC) were used. Electroencephalographic (EEG) recordings were acquired from the 6- and 16-week-old animals to quantify seizure expression. Somatosensory cortex (SCx) and whole thalamus were collected from all the animals to evaluate TARP and AMPAR mRNA expression. Analysis of the EEG demonstrated a gradual increase in the number and duration of seizures across GAERS development. mRNA expression of the TARPs γ2, γ3, γ4, γ5, and γ8 in the SCx, and γ4 and γ5 in the thalamus, increased as the seizures started and progressed in the GAERS compared to NEC. There was a temporal association between increased TARP expression and seizures in GAERS, highlighting TARPs as potential targets for developing novel treatments for IGE with absence seizures.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Ratos , Masculino , Animais , Epilepsia Tipo Ausência/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Convulsões/genética , RNA Mensageiro , Imunoglobulina E , Modelos Animais de Doenças
3.
Drug Dev Res ; 85(2): e22160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380694

RESUMO

BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.


Assuntos
Epilepsia Tipo Ausência , Humanos , Ratos , Animais , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Receptores de GABA-A , Alta do Paciente , Eletroencefalografia , Ratos Wistar , Ácido gama-Aminobutírico , Modelos Animais de Doenças
4.
J Headache Pain ; 25(1): 75, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724972

RESUMO

BACKGROUND: GABA, a key inhibitory neurotransmitter, has synaptic and extrasynaptic receptors on the postsynaptic neuron. Background GABA, which spills over from the synaptic cleft, acts on extrasynaptic delta subunit containing GABAA receptors. The role of extrasynaptic GABAergic input in migraine is unknown. We investigated the susceptibility to valid migraine-provoking substances with clinically relevant behavioral readouts in Genetic Absence Epilepsy of Rats Strasbourg (GAERS), in which the GABAergic tonus was altered. Subsequently, we screened relevant GABAergic mechanisms in Wistar rats by pharmacological means to identify the mechanisms. METHODS: Wistar and GAERS rats were administered nitroglycerin (10 mg/kg) or levcromakalim (1 mg/kg). Mechanical allodynia and photophobia were assessed using von Frey monofilaments and a dark-light box. Effects of GAT-1 blocker tiagabine (5 mg/kg), GABAB receptor agonist baclofen (2 mg/kg), synaptic GABAA receptor agonist diazepam (1 mg/kg), extrasynaptic GABAA receptor agonists gaboxadol (4 mg/kg), and muscimol (0.75 mg/kg), T-type calcium channel blocker ethosuximide (100 mg/kg) or synaptic GABAA receptor antagonist flumazenil (15 mg/kg) on levcromakalim-induced migraine phenotype were screened. RESULTS: Unlike Wistar rats, GAERS exhibited no reduction in mechanical pain thresholds or light aversion following nitroglycerin or levcromakalim injection. Ethosuximide did not reverse the resistant phenotype in GAERS, excluding the role of T-type calcium channel dysfunction in this phenomenon. Tiagabine prevented levcromakalim-induced mechanical allodynia in Wistar rats, suggesting a key role in enhanced GABA spillover. Baclofen did not alleviate mechanical allodynia. Diazepam failed to mitigate levcromakalim-induced migraine phenotype. Additionally, the resistant phenotype in GAERS was not affected by flumazenil. Extrasynaptic GABAA receptor agonists gaboxadol and muscimol inhibited periorbital allodynia in Wistar rats. CONCLUSION: Our study introduced a rat strain resistant to migraine-provoking agents and signified a critical involvement of extrasynaptic δGABAergic receptors. Extrasynaptic δ GABAA receptors, by mediating constant background inhibition on the excitability of neurons, stand as a novel drug target with a therapeutic potential in migraine.


Assuntos
Transtornos de Enxaqueca , Fenótipo , Ratos Wistar , Receptores de GABA-A , Animais , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Ratos , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Masculino , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/fisiopatologia , Nitroglicerina/farmacologia , Nitroglicerina/toxicidade , Fotofobia/etiologia , Fotofobia/fisiopatologia
5.
Neurobiol Dis ; 184: 106217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391087

RESUMO

RATIONALE: Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS: To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS: GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION: The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.


Assuntos
Canais de Cálcio Tipo T , Epilepsia Tipo Ausência , Animais , Ratos , Canais de Cálcio Tipo T/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Mutação/genética , Ratos Wistar , Convulsões/genética
6.
Neurobiol Dis ; 186: 106275, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648038

RESUMO

Typical absence seizures (ASs) are brief periods of lack of consciousness, associated with 2.5-4 Hz spike-wave discharges (SWDs) in the EEG, which are highly prevalent in children and teenagers. The majority of probands in these young epileptic cohorts show neuropsychological comorbidities, including cognitive, memory and mood impairments, even after the seizures are pharmacologically controlled. Similar cognition and memory deficits have been reported in different, but not all, genetic animal models of ASs. However, since these impairments are subtle and highly task-specific their presence may be confounded by an anxiety-like phenotype and no study has tested anxiety and memory in the same animals. Moreover, the majority of studies used non-epileptic inbred animals as the only control strain and this may have contributed to a misinterpretation of these behavioural results. To overcome these issues, here we used a battery of behavioural tests to compare anxiety and memory in the same animals from the well-established inbred model of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), their inbred strain of Non-Epileptic Control (NEC) strain (that lack ASs) and normal outbred Wistar rats. We found that GAERS do not exhibit increased anxiety-like behavior and neophobia compared to both NEC and Wistar rats. In contrast, GAERS show decreased spontaneous alternation, spatial working memory and cross-modal object recognition compared to both NEC and Wistar rats. Furthermore, GAERS preferentially used egocentric strategies to perform spatial memory tasks. In summary, these results provide solid evidence of memory deficits in GAERS rats that do not depend on an anxiety or neophobic phenotype. Moreover, the presence of differences between NEC and Wistar rats stresses the need of using both outbred and inbred control rats in behavioural studies involving genetic models of ASs.


Assuntos
Ansiedade , Convulsões , Humanos , Criança , Adolescente , Ratos , Animais , Ratos Wistar , Cognição , Transtornos da Memória
7.
Epilepsia ; 64(6): 1684-1693, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916834

RESUMO

OBJECTIVE: Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias. Here, we used genetic absence epilepsy rats from Strasbourg (GAERS), a genetic rat model of absence epilepsy, to explore the influence of stress and stress hormones on spontaneous seizures. METHODS: Adult male GAERS (n = 38) and nonepileptic control (NEC) rats (n = 4) were used. First, rats were subjected to 30-min restraint stress to assess hypothalamic-pituitary-adrenal axis function. Next, we assessed the effects of 30-min noise stress, and cage tilt stress, on spike-wave discharge seizures in GAERS. We then performed pharmacological experiments to assess the direct effects of stress hormones on seizures, including corticosterone, metyrapone, and deoxycorticosterone. RESULTS: GAERS exhibited elevated baseline corticosterone levels, compared to NEC rats. Noise stress and cage tilt stress significantly enhanced seizure incidence (p < .05), but only during stress periods. Exogenous corticosterone administration also significantly increased seizure occurrence (p < .05). Metyrapone, an inhibitor of corticosterone synthesis, completely abolished seizures in GAERS, and seizures remained suppressed for >2 h. However, deoxycorticosterone, the precursor of corticosterone, increased seizures. SIGNIFICANCE: These results suggest that GAERS exhibit elevations in stress hormones, and this may contribute to seizures. Inhibiting corticosterone synthesis with metyrapone prevents seizures in GAERS, and shows potential for repurposing this drug as a future antiseizure medication.


Assuntos
Epilepsia Tipo Ausência , Humanos , Ratos , Masculino , Animais , Epilepsia Tipo Ausência/genética , Metirapona/farmacologia , Corticosterona , Sistema Hipotálamo-Hipofisário , Alta do Paciente , Eletroencefalografia , Sistema Hipófise-Suprarrenal , Convulsões , Desoxicorticosterona , Modelos Animais de Doenças
8.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682742

RESUMO

Absence epilepsy syndromes are part of the genetic generalized epilepsies, the pathogenesis of which remains poorly understood, although a polygenic architecture is presumed. Current focus on single molecule or gene identification to elucidate epileptogenic drivers is unable to fully capture the complex dysfunctional interactions occurring at a genetic/proteomic/metabolomic level. Here, we employ a multi-omic, network-based approach to characterize the molecular signature associated with absence epilepsy-like phenotype seen in a well validated rat model of genetic generalized epilepsy with absence seizures. Electroencephalographic and behavioral data was collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS, n = 6) and non-epileptic controls (NEC, n = 6), followed by proteomic and metabolomic profiling of the cortical and thalamic tissue of rats from both groups. The general framework of weighted correlation network analysis (WGCNA) was used to identify groups of highly correlated proteins and metabolites, which were then functionally annotated through joint pathway enrichment analysis. In both brain regions a large protein-metabolite module was found to be highly associated with the GAERS strain, absence seizures and associated anxiety and depressive-like phenotype. Quantitative pathway analysis indicated enrichment in oxidative pathways and a downregulation of the lysine degradation pathway in both brain regions. GSTM1 and ALDH2 were identified as central regulatory hubs of the seizure-associated module in the somatosensory cortex and thalamus, respectively. These enzymes are involved in lysine degradation and play important roles in maintaining oxidative balance. We conclude that the dysregulated pathways identified in the seizure-associated module may be involved in the aetiology and maintenance of absence seizure activity. This dysregulated activity could potentially be modulated by targeting one or both central regulatory hubs.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Generalizada/genética , Lisina , Proteômica , Ratos , Convulsões/metabolismo
9.
Epilepsia ; 62(5): 1041-1056, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33751566

RESUMO

Absence seizures (AS), presenting as short losses of consciousness with staring spells, are a common manifestation of childhood epilepsy that is associated with behavioral, emotional, and social impairments. It has also been suggested that patients with AS are more likely to suffer from mood disorders such as depression and anxiety. This systematic review and meta-analysis synthesizes human and animal models that investigated mood disorders and AS. Of the 1019 scientific publications identified, 35 articles met the inclusion criteria for this review. We found that patients with AS had greater odds of developing depression and anxiety when compared to controls (odds ratio = 4.93, 95% confidence interval = 2.91-8.35, p < .01). The included studies further suggest a strong correlation between AS and depression and anxiety in the form of a bidirectional relationship. The current literature emphasizes that these conditions likely share underlying mechanisms, such as genetic predisposition, neurophysiology, and anatomical pathways. Further research will clarify this relationship and ensure more effective treatment for AS and mood disorders.


Assuntos
Ansiedade/epidemiologia , Depressão/epidemiologia , Epilepsia Tipo Ausência/psicologia , Convulsões/psicologia , Animais , Ansiedade/etiologia , Depressão/etiologia , Humanos
10.
Epilepsia ; 61(6): 1291-1300, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415786

RESUMO

OBJECTIVE: Sodium valproate (VPA), the most effective antiepileptic drug for patients with genetic generalized epilepsy (GGE), is a potent human teratogen that increases the risk of a range of congenital malformations, including spina bifida. The mechanisms underlying this teratogenicity are not known, but may involve genetic risk factors. This study aimed to develop an animal model of VPA-induced birth defects. METHODS: We used three different rat strains: inbred Genetic Absence Epilepsy Rats From Strasbourg (GAERS), a model of GGE with absence seizures; inbred Non-Epileptic Controls (NEC); and outbred nonepileptic Wistars. Female rats were fed standard chow or VPA (20 g/kg food) mixed in standard chow for 2 weeks prior to conception, and then mated with same-strain males. Treatment continued throughout pregnancy. Fetuses were extracted via C-section on gestational day 21 and examined for birth defects, including external assessment and spinal measurements. RESULTS: VPA-exposed pups showed significant reductions in weight, length, and whole-body development compared with controls of all three strains (P < .0001). Gestational VPA treatment altered intravertebral distances, and resulted in underdeveloped vertebral arches between thoracic region T11 and caudal region C2 in most pups (GAERS, 100%; NEC, 95%; Wistar, 80%), more frequently than in controls (9%, 13%, 19%). SIGNIFICANCE: Gestational VPA treatment results in similar developmental and morphological abnormalities in three rat strains, including one with GGE, indicating that the genetic underpinnings of epilepsy do not contribute markedly to VPA-induced birth defects. This model may be used in future studies to investigate mechanisms involved in the pathogenesis of antiepileptic drug-induced birth defects.


Assuntos
Anticonvulsivantes/toxicidade , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Teratogênicos/toxicidade , Ácido Valproico/toxicidade , Anormalidades Induzidas por Medicamentos/patologia , Administração Oral , Animais , Feminino , Masculino , Gravidez , Ratos , Ratos Transgênicos , Ratos Wistar
11.
Epilepsia ; 61(12): 2825-2835, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098125

RESUMO

OBJECTIVE: The role of α2A adrenergic receptors (α2A ARs) in absence epilepsy is not well characterized. Therefore, we investigated the outcomes of the specific antagonism of α2A ARs on the spike-and-wave discharges (SWDs) in genetic absence epilepsy rats from Strasbourg (GAERSs), together with its influence on the behavior and second messenger systems, which may point to the mechanisms to which a possible SWD modulation can be related. METHODS: Atipamezole, an α2A AR antagonist, was administered intracerebroventricularly to the adult GAERSs, and electroencephalography (EEG) was conducted. The cumulative duration and number of SWDs, and the mean duration of each SWD complex were counted. The relative power of the EEG frequency bands and behavioral activity after the acute application of two doses (12 and 31 µg/5 µL) of atipamezole were evaluated. The levels of cyclic adenosine monophosphate and calcium/calmodulin-dependent kinase II (CaMKII) were measured in the cortex, thalamus, and hippocampus of naive Wistar rats and GAERSs, administered with artificial cerebrospinal fluid (aCSF) as a vehicle, or either acute or chronic atipamezole (12 µg), the latter being administered for 5 consecutive days. RESULTS: Atipamezole significantly suppressed SWDs dose-dependently, without affecting the relative power values of EEG frequency spectrum. The stereotypic activity was significantly lower in both naive Wistar rats and GAERSs receiving the highest dose (31 µg) of atipamezole compared to GAERSs receiving aCSF. In GAERSs, CaMKII levels were found to be higher in the thalamus after the acute and chronic application of SWD-suppressing doses of atipamezole (12 and 31 µg) compared to aCSF. SIGNIFICANCE: This study emphasizes the α2 AR-related modulation of absence epilepsy and particularly the significance of α2 AR antagonism in suppressing SWDs. Atipamezole's SWD-suppressive actions may be through CaMKII-mediated second messenger systems in the thalamus.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Anticonvulsivantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Epilepsia Tipo Ausência/tratamento farmacológico , Imidazóis/farmacologia , Tálamo/efeitos dos fármacos , Animais , Anticonvulsivantes/administração & dosagem , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Epilepsia Tipo Ausência/enzimologia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Imidazóis/administração & dosagem , Injeções Intraventriculares , Masculino , Ratos , Ratos Endogâmicos , Ratos Wistar , Tálamo/fisiopatologia
12.
Clin Exp Pharmacol Physiol ; 47(9): 1530-1536, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304254

RESUMO

Insulin-mediated signalling in the brain is critical for neuronal functioning. Insulin resistance is implicated in the development of some neurological diseases, although changes associated with absence epilepsy have not been established yet. Therefore, we examined the major components of PI3K/Akt-mediated insulin signalling in cortical, thalamic, and hippocampal tissues collected from Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC) rats. Insulin levels were also measured in plasma and cerebrospinal fluid (CSF). For the brain samples, the nuclear fraction (NF) and total homogenate (TH) were isolated and investigated for insulin signalling markers including insulin receptor beta (IRß), IR substrate-1 and 2 (IRS1 & 2), phosphatase and tensin homologue (PTEN), phosphoinositide 3-kinase phospho-85 alpha (PI3K p85α), phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate, protein kinase B (PKB/Akt1/2/3), glucose transporter-1 and 4 (GLUT1 & 4) and glycogen synthase kinase-3ß (GSK3ß) using western blotting. A significant increase in PTEN and GSK3ß levels and decreased PI3K p85α and pAkt1/2/3 levels were observed in NF of GAERS cortical and hippocampal tissues. IRß, IRS1, GLUT1, and GLUT4 levels were significantly decreased in hippocampal TH of GAERS compared to NEC. A non-significant increase in insulin levels was observed in plasma and CSF of GAERS rats. An insulin sensitivity assay showed decreased p-Akt level in cortical and hippocampal tissues. Together, altered hippocampal insulin signalling was more prominent in NF and TH compared to cortical and thalamic regions in GAERS. Restoring insulin signalling may improve the pathophysiology displayed by GAERS, including the spike-and-wave discharges that relate to absence seizures in patients.


Assuntos
Ondas Encefálicas , Epilepsia Tipo Ausência/metabolismo , Insulina/metabolismo , Rombencéfalo/metabolismo , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Insulina/sangue , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos , Receptor de Insulina/metabolismo , Rombencéfalo/fisiopatologia , Transdução de Sinais
13.
Ultrastruct Pathol ; 44(4-6): 379-386, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33118420

RESUMO

Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a well-known animal model of absence epilepsy and they are resistant to electrical kindling stimulations. The present study aimed to examine possible differences in gamma-aminobutyric acid (GABA) levels and synapse counts in the substantia nigra pars reticulata anterior (SNRa) and posterior (SNRp) regions between GAERS and Wistar rats receiving kindling stimulations. Animals in the kindling group either received six stimulations in the amygdala and had grade 2 seizures or they were kindled, having grade five seizures. Rats were decapitated one hour after the last stimulation. SNR regions were obtained after vibratome sectioning of the brain tissue. GABA immunoreactivity was detected by immunogold method and synapses were counted. Sections were observed by transmission electron microscope and analyzed by Image J program. GABA density in the SNRa region of fully kindled GAERS and Wistar groups increased significantly compared to that of their corresponding grade 2 groups. The number of synapses increased significantly in kindled and grade 2 GAERS groups, compared to kindled and grade 2 Wistar groups, respectively, in the SNRa region. GABA density in the SNRp region of kindled GAERS group increased significantly compared to that of GAERS grade 2 group. In the SNRp region, both kindled and grade 2 GAERS groups were found to have increased number of synapses compared to that of GAERS control group. We concluded that both SNRa and SNRp regions may be important in modulating resistance of GAERS to kindling stimulations.


Assuntos
Epilepsia Tipo Ausência/metabolismo , Parte Reticular da Substância Negra/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia Tipo Ausência/patologia , Imuno-Histoquímica , Excitação Neurológica/metabolismo , Excitação Neurológica/patologia , Masculino , Microscopia Eletrônica de Transmissão , Parte Reticular da Substância Negra/metabolismo , Parte Reticular da Substância Negra/patologia , Ratos , Ratos Wistar , Sinapses/patologia , Ácido gama-Aminobutírico/análise
14.
Epilepsia ; 60(7): 1378-1386, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31206645

RESUMO

OBJECTIVE: Recent data indicate that amygdala kindling leads to significant changes in interictal neuronal firing patterns of thalamic reticular nucleus (TRN) neurons by decreasing the spontaneous firing rate and increasing burst firing in nonepileptic control (NEC) rats. Genetic Absence Epilepsy Rats From Strasbourg (GAERS) were resistant to these kindling-induced firing changes in TRN neurons, and are also resistant to the progression of kindling. We investigated whether a homozygous, missense, single nucleotide mutation (R1584P) in the Cav 3.2 T-type Ca2+ channel gene, which has been correlated with the expression of absence seizures in GAERS, influenced kindling progression and TRN firing patterns. METHODS: Double-crossed (GAERS vs NEC; F2) rats that were homozygous for the Cav 3.2 mutation (PP) and those negative for the mutation (RR) were implanted with a stimulating electrode in the amygdala. Rats received a total of 30 kindling stimulations at their afterdischarge threshold current twice daily, and kindling progression was evaluated. Thereafter, the extracellular neuronal activity of TRN neurons was recorded in vivo under neuroleptanesthesia to investigate the influence of Cav 3.2 mutation on TRN firing patterns. RESULTS: We found that the R1584P mutation did not affect kindling progression in F2 crosses (P = 0.78). However, it influenced kindling-induced neuronal firing of TRN neurons. After 30 stimulations, RR rats exhibited a lower firing rate and a higher percentage of burst firing compared to PP rats. The decrease in firing frequency was correlated with the increase in the amount of burst firing in RR rats (R2  = 0.497). SIGNIFICANCE: Our findings suggest that mutation in Cav 3.2 T-type Ca2+ channels may play a role in the resistance to kindling-induced changes in TRN neurons to a low-frequency and high-percentage bursting pattern seen in association with the convulsive stages of amygdala kindling, but is not in itself enough to explain the resistance to kindling progression observed in GAERS.


Assuntos
Canais de Cálcio Tipo T/genética , Epilepsia Tipo Ausência/genética , Excitação Neurológica , Núcleos Talâmicos/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Eletrodos Implantados , Eletroencefalografia , Epilepsia Tipo Ausência/etiologia , Epilepsia Tipo Ausência/fisiopatologia , Excitação Neurológica/genética , Excitação Neurológica/fisiologia , Masculino , Mutação de Sentido Incorreto/genética , Reação em Cadeia da Polimerase , Ratos
15.
Cereb Cortex ; 27(9): 4607-4623, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922856

RESUMO

The epileptogenic processes leading to recurrent seizures in Genetic Epilepsies are largely unknown. Using the Genetic Absence Epilepsy Rat from Strasbourg, we investigated in vivo the network and single neuron mechanisms responsible for the early emergence of epileptic activity. Local field potential recordings in the primary somatosensory cortex (SoCx), from the second post-natal week to adulthood, showed that immature cortical discharges progressively evolved into typical spike-and-wave discharges following a 3-step maturation process. Intracellular recordings from deep-layer SoCx neurons revealed that this maturation was associated with an age-dependent increase in cortical neurons intrinsic excitability, combining a membrane depolarization and an enhancement of spontaneous firing rate with a leftward shift in their input-output relation. These cellular changes were accompanied by a progressive increase in the strength of the local synaptic activity associated with a growing propensity of neurons to generate synchronized oscillations. Chronic anti-absence treatment before the occurrence of mature cortical discharges did not alter epileptogenesis or the drug efficiency at adulthood. These findings demonstrate that recurrent absence seizures originate from the progressive acquisition of pro-ictogenic properties in SoCx neurons and networks during the post-natal period and that these processes cannot be interrupted by early anti-absence treatment.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Convulsões/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Neurônios/fisiologia , Ratos , Ratos Wistar
16.
Magn Reson Med ; 78(5): 2003-2010, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28090665

RESUMO

PURPOSE: Investigating directional interactions between brain regions plays a critical role in fully understanding brain function. Consequently, multiple methods have been developed for noninvasively inferring directional connectivity in human brain networks using functional MRI (fMRI). Recent simulations by Smith et al. showed that Patel's τ, a method based on higher-order statistics, was the best approach for inferring directional interactions from fMRI. Because simulations make restrictive assumptions about reality, we set out to verify this finding using experimental fMRI data obtained from a three-region network in a rat model with electrophysiological validation. METHODS: Previous studies have shown that dynamic causal modeling can correctly estimate the directionality of this three-region network; Granger causality can also work after the deconvolution of the hemodynamic response. Therefore, we set out to test the hypothesis that Patel's τ obtained from either raw or deconvolved fMRI data should correctly estimate the directionality of neuronal influences obtained from intracerebral electroencephalogram in this network. RESULTS: Our results indicate that the accuracy of network directionality estimated using Patel's τ was not better than chance. CONCLUSION: First, our results highlight the necessity of experimental validation of simulation results. Second, it is unclear which brain mechanism is modeled by a directionality inferred from Patel's τ. Third, this study shows that a directional connection ascertained by different methods may mean different things and more experimental studies are needed for investigating the neuronal mechanisms underlying the direction of a connection in the brain ascertained by fMRI using different methods. M Magn Reson Med 78:2003-2010, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/diagnóstico por imagem , Animais , Encéfalo/fisiologia , Simulação por Computador , Eletroencefalografia , Rede Nervosa/fisiologia , Ratos
17.
Neurochem Res ; 42(7): 2055-2064, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28508994

RESUMO

Epilepsy is a common neurological condition characterised by spontaneous recurrent seizures. Current anti-epileptic drugs are only effective and tolerated in ~70% of patients, leaving a substantial proportion of patients untreated. As such, there is a pressing need to develop new therapies. We assessed the anti-seizure activity of Neural Regeneration Peptide 2945 (NRP 2945) in the GAERS model of absence epilepsy. Drug effects on seizures were assessed using two study designs. Male adult GAERS were implanted with EEG electrodes to measure seizure frequency. The first study compared the effects of acute sc injection of vehicle, NRP 10 µg/kg, NRP 20 µg/kg, and controlled against the active comparator Valproaic acid (200 mg/kg). In the second study, animals received one of four treatments for 4 weeks: vehicle, NRP 60 µg/kg/day, NRP 120 µg/kg/day (delivered by continuous infusion) or NRP 20 µg/kg sc injected every second day (e.s.d). In the acute study, we found significant (p < 0.01) anti-seizure effects in animals treated with NRP2945 (20 µg/kg) and VPA, with NRP2945 slightly more efficacious, despite the 70,000 times lower molar dosage. In the chronic study, animals receiving 120 µg/kg/day and NRP 20 µg/kg e.s.d had significantly fewer seizures (p < 0.001), compared with vehicle. These effects were sustained for at least 10 days after drug treatment had ceased, indicative of disease-modifying activity. We demonstrate sustained anti-seizure effects of NRP2945, a potent small molecule peptide which enters the brain and is devoid of adverse effects. Early stage first-in-man trials have been initiated for subcutaneously delivered NRP2945 which is a promising step to providing therapeutic benefits for refractory epilepsy patients.


Assuntos
Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Epilepsia Tipo Ausência/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Animais , Anticonvulsivantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Esquema de Medicação , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Masculino , Microdiálise/métodos , Regeneração Nervosa/fisiologia , Oligopeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
18.
Neurobiol Dis ; 94: 106-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27282256

RESUMO

Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits.


Assuntos
Acetamidas/farmacologia , Benzamidas/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Epilepsia Tipo Ausência , Transtornos da Memória , Memória/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Feminino , Masculino , Transtornos da Memória/tratamento farmacológico , Piperidinas , Tato/fisiologia
19.
Neurobiol Dis ; 93: 129-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27185593

RESUMO

INTRODUCTION: The absence epilepsies are presumed to be caused by genetic factors, but the influence of environmental exposures on epilepsy development and severity, and whether this influence is transmitted to subsequent generations, is not well known. We assessed the effects of environmental enrichment on epilepsy and anxiety outcomes in multiple generations of GAERS - a genetic rat model of absence epilepsy that manifests comorbid elevated anxiety-like behaviour. METHODS: GAERS were exposed to environmental enrichment or standard housing beginning either prior to, or after epilepsy onset, and underwent EEG recordings and anxiety testing. Then, we exposed male GAERS to early enrichment or standard housing and generated F1 progeny, which also underwent EEG recordings. Hippocampal CRH mRNA expression and DNA methylation were assessed using RT-PCR and pyrosequencing, respectively. RESULTS: Early environmental enrichment delayed the onset of epilepsy in GAERS, and resulted in fewer seizures in adulthood, compared with standard housed GAERS. Enrichment also reduced the frequency of seizures when initiated in adulthood. Anxiety levels were reduced by enrichment, and these anti-epileptogenic and anxiolytic effects were heritable into the next generation. We also found reduced expression of CRH mRNA in GAERS exposed to enrichment, but this was not due to changes in DNA methylation. CONCLUSIONS: Environmental enrichment produces disease-modifying effects on genetically determined absence epilepsy and anxiety, and these beneficial effects are transferable to the subsequent generation. Reduced CRH expression was associated with these phenotypic improvements. Environmental stimulation holds promise as a naturalistic therapy for genetically determined epilepsy which may benefit subsequent generations.


Assuntos
Ansiedade/genética , Encéfalo/fisiopatologia , Epilepsia Tipo Ausência/genética , Convulsões/complicações , Animais , Transtornos de Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Meio Ambiente , Ratos
20.
Eur J Neurosci ; 43(1): 25-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26490879

RESUMO

Behavioural, neurological, and genetic similarities exist in epilepsies, their psychiatric comorbidities, and various psychiatric illnesses, suggesting common aetiological factors. Rodent models of epilepsy are used to characterize the comorbid symptoms apparent in epilepsy and their neurobiological mechanisms. The present study was designed to assess Pavlovian fear conditioning and latent inhibition in a polygenetic rat model of absence epilepsy, i.e. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the non-epileptic control (NEC) strain. Electrophysiological recordings confirmed the presence of spike-wave discharges in young adult GAERS but not NEC rats. A series of behavioural tests designed to assess anxiety-like behaviour (elevated plus maze, open field, acoustic startle response) and cognition (Pavlovian conditioning and latent inhibition) was subsequently conducted on male and female offspring. Results showed that GAERS exhibited significantly higher anxiety-like behaviour, a characteristic reported previously. In addition, using two protocols that differed in shock intensity, we found that both sexes of GAERS displayed exaggerated cued and contextual Pavlovian fear conditioning and impaired fear extinction. Fear reinstatement to the conditioned stimuli following unsignalled footshocks did not differ between the strains. Male GAERS also showed impaired latent inhibition in a paradigm using Pavlovian fear conditioning, suggesting that they may have altered attention, particularly related to previously irrelevant stimuli in the environment. Neither the female GAERS nor NEC rats showed evidence of latent inhibition in our paradigm. Together, the results suggest that GAERS may be a particularly useful model for assessing therapeutics designed to improve the emotional and cognitive disturbances associated with absence epilepsy.


Assuntos
Ansiedade/fisiopatologia , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Epilepsia Tipo Ausência/fisiopatologia , Epilepsia Tipo Ausência/psicologia , Medo/fisiologia , Potenciais de Ação , Animais , Ansiedade/etiologia , Aprendizagem da Esquiva/fisiologia , Comorbidade , Eletroencefalografia , Epilepsia Tipo Ausência/complicações , Epilepsia Tipo Ausência/genética , Extinção Psicológica/fisiologia , Feminino , Humanos , Masculino , Inibição Pré-Pulso , Ratos , Reflexo de Sobressalto , Córtex Somatossensorial/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA