RESUMO
BACKGROUND: The endothelial-mesenchymal transition (EndoMT) is a fundamental process for heart valve formation and defects in EndoMT cause aortic valve abnormalities. Our previous genome-wide association study identified multiple variants in a large chromosome 8 segment as significantly associated with bicuspid aortic valve (BAV). The objective of this study is to determine the biological effects of this large noncoding segment in human induced pluripotent stem cell (hiPSC)-based EndoMT. METHODS: A large genomic segment enriched for BAV-associated variants was deleted in hiPSCs using 2-step CRISPR/Cas9 editing. To address the effects of the variants on GATA4 expression, we generated CRISPR repression hiPSC lines (CRISPRi) as well as hiPSCs from BAV patients. The resulting hiPSCs were differentiated to mesenchymal/myofibroblast-like cells through cardiovascular-lineage endothelial cells for molecular and cellular analysis. Single-cell RNA sequencing was also performed at different stages of EndoMT induction. RESULTS: The large deletion impaired hiPSC-based EndoMT in multiple biallelic clones compared with their isogenic control. It also reduced GATA4 transcript and protein levels during EndoMT, sparing the other genes nearby the deletion segment. Single-cell trajectory analysis revealed the molecular reprogramming during EndoMT. Putative GATA-binding protein targets during EndoMT were uncovered, including genes implicated in endocardial cushion formation and EndoMT process. Differentiation of cells derived from BAV patients carrying the rs117430032 variant as well as CRISPRi repression of the rs117430032 locus resulted in lower GATA4 expression in a stage-specific manner. TWIST1 was identified as a potential regulator of GATA4 expression, showing specificity to the locus tagged by rs117430032. CONCLUSIONS: BAV-associated distal regions regulate GATA4 expression during hiPSC-based EndoMT, which in turn promotes EndoMT progression, implicating its contribution to heart valve development.
Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Células-Tronco Pluripotentes Induzidas , Humanos , Doença da Válvula Aórtica Bicúspide/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Valva Aórtica/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismoRESUMO
BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.
Assuntos
Fator de Transcrição GATA4 , Células-Tronco Pluripotentes Induzidas , Processamento Alternativo , Animais , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , RNA/genética , RNA/metabolismoRESUMO
Pancreatic heterotopia is defined as pancreatic tissue outside its normal location in the body and anatomically separated from the pancreas. In this work we have analyzed the stomach glandular epithelium of Gata4 flox/flox ; Pdx1-Cre mice (Gata4KO mice). We found that Gata4KO glandular epithelium displays an atypical morphology similar to the cornified squamous epithelium and exhibits upregulation of forestomach markers. The developing gastric units fail to form properly, and the glandular epithelial cells do not express markers of gastric gland in the absence of GATA4. Of interest, the developing glands of the Gata4KO stomach express pancreatic cell markers. Furthermore, a mass of pancreatic tissue located in the subserosa of the Gata4KO stomach is observed at adult stages. Heterotopic pancreas found in Gata4-deficient mice contains all three pancreatic cell lineages: ductal, acinar, and endocrine. Moreover, Gata4 expression is downregulated in ectopic pancreatic tissue of some human biopsy samples. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Células Epiteliais/patologia , Fator de Transcrição GATA4/genética , Pâncreas/patologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos Transgênicos , Organogênese/fisiologiaRESUMO
BACKGROUND: Congenital heart disease (CHD) is one of the most common birth defects in newborns. The etiology of CHD has remained largely unknown, but it is assumed to result from the combined effects of genetic and environmental factors. Recent investigations have detected potentially pathogenic copy number variations (CNV) in a proportion of patients with CHD. The present case-control study evaluated whether CNV in the GATA4 and NKX2-5 genes contribute to the pathogenesis of CHD in Chinese fetuses (n = 117), by comparing them with non-CHD control subjects (n = 100). METHODS: Multiplex ligation-dependent probe amplification with the P311A probe mixture was used to detect CNV. RESULTS: The normalized signals were within the normal range for all exons in all CHD patients and non-CHD control subjects. Of the 117 CHD patients, three had a deletion of 22q11, and two had a duplication of 22q11. CONCLUSIONS: There was no evidence of a role for NKX2-5 and GATA4â CNV in fetal CHD; therefore, these CNV may not be common in fetal CHD in China.
Assuntos
Variações do Número de Cópias de DNA , Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Proteína Homeobox Nkx-2.5/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Feminino , Feto , Predisposição Genética para Doença , Humanos , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase MultiplexRESUMO
Background/Aims: Gastric intestinal metaplasia (GIM), a common precancerous lesion of gastric cancer, can be caused by bile acid reflux. GATA binding protein 4 (GATA4) is an intestinal transcription factor involved in the progression of gastric cancer. However, the expression and regulation of GATA4 in GIM has not been clarified. Methods: The expression of GATA4 in bile acid-induced cell models and human specimens was examined. The transcriptional regulation of GATA4 was investigated by chromatin immunoprecipitation and luciferase reporter gene analysis. An animal model of duodenogastric reflux was used to confirm the regulation of GATA4 and its target genes by bile acids. Results: GATA4 expression was elevated in bile acid-induced GIM and human specimens. GATA4 bound to the promoter of mucin 2 (MUC2) and stimulate its transcription. GATA4 and MUC2 expression was positively correlated in GIM tissues. Nuclear transcription factor-κB activation was required for the upregulation of GATA4 and MUC2 in bile acid-induced GIM cell models. GATA4 and caudal-related homeobox 2 (CDX2) reciprocally transactivated each other to drive the transcription of MUC2. In chenodeoxycholic acid-treated mice, MUC2, CDX2, GATA4, p50, and p65 expression levels were increased in the gastric mucosa. Conclusions: GATA4 is upregulated and can form a positive feedback loop with CDX2 to transactivate MUC2 in GIM. NF-κB signaling is involved in the upregulation of GATA4 by chenodeoxycholic acid.
RESUMO
The normal development of the heart comprises a highly regulated machinery of genetic events, involving transcriptional factors. Congenital heart disease (CHD), have been associated with chromosomal abnormalities and copy number variants (CNVs). Our goal was to investigate through the multiplex ligation-dependent probe amplification (MLPA) technique, the presence of CNVs in reference genes for normal cardiac development in patients with CHD. GATA4 , NKX2-5 , TBX5 , BMP4 , and CRELD1 genes and 22q11.2 chromosome region were analyzed in 207 children with CHD admitted for the first time in a cardiac intensive care unit from a pediatric hospital. CNVs were detected in seven patients (3.4%): four had a 22q11.2 deletion (22q11DS) (1.9%), two had a GATA4 deletion (1%) and one had a 22q11.2 duplication (0.5%). No patients with CNVs in the NKX2-5 , TBX5 , BMP4 , and CRELD1 genes were identified. GATA4 deletions appear to be present in a significant number of CHD patients, especially those with septal defects, persistent left superior vena cava, pulmonary artery abnormalities, and extracardiac findings. GATA4 screening seems to be more effective when directed to these CHDs. The investigation of CNVs in GATA4 and 22q11 chromosome region in patients with CHD is important to anticipating the diagnosis, and to contributing to family planning.
RESUMO
The chronic stimulation of ß-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In ß-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3ß and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of ß-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of ß-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of ß-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of ß2 receptors out of total cardiac ß-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of ß-adrenergic-induced hypertrophy is noticeable and variations in ß1/ß2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3ß deactivation after ß-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in ß-adrenergic signaling.