Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322023

RESUMO

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide and gibberellins (GAs) play important roles in the regulation of cucumber developmental and growth processes. GA oxidases (GAoxs), which are encoded by different gene subfamilies, are particularly important in regulating bioactive GA levels by catalyzing the later steps in the biosynthetic pathway. Although GAoxs are critical enzymes in GA synthesis pathway, little is known about GAox genes in cucumber, in particular about their evolutionary relationships, expression profiles and biological function. In this study, we identified 17 GAox genes in cucumber genome and classified them into five subfamilies based on a phylogenetic tree, gene structures, and conserved motifs. Synteny analysis indicated that the tandem duplication or segmental duplication events played a minor role in the expansion of cucumber GA2ox, GA3ox and GA7ox gene families. Comparative syntenic analysis combined with phylogenetic analysis provided deep insight into the phylogenetic relationships of CsGAox genes and suggested that protein homology CsGAox are closer to AtGAox than OsGAox. In addition, candidate transcription factors BBR/BPC (BARLEY B RECOMBINANT/BASIC PENTACYSTEINE) and GRAS (GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW) which may directly bind promoters of CsGAox genes were predicted. Expression profiles derived from transcriptome data indicated that some CsGAox genes, especially CsGA20ox1, are highly expressed in seedling roots and were down-regulated under GA3 treatment. Ectopic over-expression of CsGA20ox1 in Arabidopsis significantly increased primary root length and lateral root number. Taken together, comprehensive analysis of CsGAoxs would provide a basis for understanding the evolution and function of the CsGAox family.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Cucumis sativus/enzimologia , Oxirredutases/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Cucumis sativus/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Família Multigênica , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
2.
Plant Physiol Biochem ; 212: 108738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761544

RESUMO

In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista , Proteínas de Plantas , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/enzimologia , Filogenia
3.
Adv Mater ; 36(25): e2314249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564779

RESUMO

Detecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering. Here, a sensitive and fast pyroelectric photoconductive diode (PPD), which couples the interface pyroelectric effect with the photoconductive effect based on tailored polycrystal Ga-rich GaOx (PGR-GaOx) Schottky photodiode, is first proposed. The PPD device exhibits ultrahigh detection performance for DUV and X-ray light. The responsivity for DUV light and sensitivity for X-ray are up to 104 A W-1 and 105 µC Gyair -1 cm-2, respectively. Especially, the interface pyroelectric effect induced by polar symmetry in the depletion region of the PGR-GaOx can significantly improve the response speed of the device by 105 times. Furthermore, the potential of the device is demonstrated for imaging enhancement systems with low power consumption and high sensitivity. This work fully excavates the potential of the pyroelectric effect for detectors and provides a novel design strategy to achieve sensitive and high-speed detectors.

4.
PeerJ ; 11: e15924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671358

RESUMO

Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.


Assuntos
Oxigenases de Função Mista , Oxirredutases , Proteínas de Plantas , Triticum , Agricultura , Agrobacterium/genética , Arabidopsis , Giberelinas/farmacologia , Oxirredutases/genética , Oxirredutases/metabolismo , Triticum/classificação , Triticum/enzimologia , Triticum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Motivos de Aminoácidos/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia
5.
ACS Appl Mater Interfaces ; 13(18): 21467-21473, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938748

RESUMO

As a promising high energy density electrode material for rechargeable batteries, lithium (Li) metal is still suffering from air/water instability due to its highly reactive nature. In addition, the Li dendrite issue in Li metal batteries needs to be resolved to ensure the safety of batteries and for wide applications. Herein, we demonstrate that a simple compact GaOx layer formed using liquid metal (LM) can act as an artificial solid electrolyte interphase to block moisture and oxygen in the air from corroding the lithium metal. Interestingly, GaOx that covered the electrode effectively inhibits Li dendrite growth in electrochemistry cycling, ensuring the safety of Li metal batteries. The exposed composite Li metal anode (exposed under ambient air with relative humidity (RA) ≈ 75% for 5 h) not only shows a superior stability (symmetrical cell) but also delivers an elevated cycling stability (>500 cycles at 0.5 and 1 C) with a sulfur@C cathode in the full-cell configuration. Our work provides a new pathway for the large-scale applications of the air/water-tolerant Li metal anode in rechargeable batteries.

6.
ACS Appl Mater Interfaces ; 11(1): 655-665, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525401

RESUMO

Thinning CIGSe absorber layer to less than 500 nm is desirable for reducing the cost per unit watt of photovoltaic-generated electricity, and also, the semitransparent solar cell based on such a thin absorber can be used in bifacial and superstrate configurations if the back electrode is transparent. In this study, a WO x layer is inserted between Cu(In,Ga)Se2 (CIGSe) absorber and tin-doped indium oxide back-contact to enhance the hole collection at the back electrode. A WO x interlayer with a thickness of 6 nm is found to be optimum because it causes a ∼38% relative increase in the fill factor of a ∼450 nm thick CIGSe-based device compared to the reference device without a WO x interlayer. While fixing the thickness of CIGSe, increasing the WO x interlayer thickness to ≥6 nm results in decreases of solar cell parameters primarily because of the emergence of a GaO x interfacial layer at the CIGSe/WO x junction.

7.
ACS Appl Mater Interfaces ; 6(24): 22235-42, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25470494

RESUMO

We report here a simple and robust process to convert embedded conductive GaN epilayers into insulating GaOx and demonstrate its efficacy in vertical current blocking and lateral current steering in a working LED device. The fabrication processes consist of laser scribing, electrochemical (EC) wet-etching, photoelectrochemical (PEC) oxidation, and thermal oxidization of a sacrificial n(+)-GaN:Si layer. The conversion of GaN is made possible through an intermediate stage of porosification where the standard n-type GaN epilayers can be laterally and selectively anodized into a nanoporous (NP) texture while keeping the rest of the layers intact. The fibrous texture of NP GaN with an average wall thickness of less than 100 nm dramatically increases the surface-to-volume ratio and facilitates a rapid oxidation process of GaN into GaOX. The GaOX aperture was formed on the n-side of the LED between the active region and the n-type GaN layer. The wavelength blueshift phenomena of electroluminescence spectra is observed in the treated aperture-emission LED structure (441.5 nm) when compared to nontreated LED structure (443.7 nm) at 0.1 mA. The observation of aperture-confined electroluminescence from an InGaN LED structure suggests that the NP GaN based oxidation will play an enabling role in the design and fabrication of III-nitride photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA