Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Phytoremediation ; 24(9): 893-901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34613832

RESUMO

Many studies have demonstrated the Eichhornia crassipes (water hyacinth) potency in removing heavy metals, but the plant's potential for sorption of gadolinium (Gd) has not yet been investigated. In this study, water hyacinth was grown in a glass container for 30 days with either GdCl3 or Gd-based contrast agent (GBCA; gadoterate) with water obtained from the Tone River. On the day 30, the Gd concentration in both the water and the plants was measured by mass spectrometry (ICP-MS). After 30 days, 98.5% of GdCl3 in the water had been absorbed by the roots, and 3.5% of Gd was transferred to the leaves. On the other hand, the water hyacinth roots absorbed only 12% of the gadoterate. When exposed to 5 mg/L of GdCl3, the roots of water hyacinth may effectively remove Gd ions in the aquatic environment, with no visible effect on the general health of the plant. However, the water hyacinth roots did not absorb GBCA. This may result in higher accumulation of Gd in the aqueous environment. The GBCA may be broken down by environmental factors and negatively affect the marine ecosystem.


This study highlights the potential capability of water hyacinths in reducing the increasing gadolinium in the environment, which may be of value in optimizing the phytoremediation of medical waste.


Assuntos
Eichhornia , Poluentes Químicos da Água , Biodegradação Ambiental , Ecossistema , Gadolínio
2.
Am J Kidney Dis ; 77(4): 517-528, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32861792

RESUMO

Gadolinium-based contrast agents (GBCAs) improve the diagnostic capabilities of magnetic resonance imaging. Although initially believed to be without major adverse effects, GBCA use in patients with severe chronic kidney disease (CKD) was demonstrated to cause nephrogenic systemic fibrosis (NSF). Restrictive policies of GBCA use in CKD and selective use of GBCAs that bind free gadolinium more strongly have resulted in the virtual elimination of NSF cases. Contemporary studies of the use of GBCAs with high binding affinity for free gadolinium in severe CKD demonstrate an absence of NSF. Despite these observations and the limitations of contemporary studies, physicians remain concerned about GBCA use in severe CKD. Concerns of GBCA use in severe CKD are magnified by recent observations demonstrating gadolinium deposition in brain and a possible systemic syndrome attributed to GBCAs. Radiologic advances have resulted in several new imaging modalities that can be used in the severe CKD population and that do not require GBCA administration. In this article, we critically review GBCA use in patients with severe CKD and provide recommendations regarding GBCA use in this population.


Assuntos
Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Insuficiência Renal Crônica/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ensaios Clínicos como Assunto/métodos , Meios de Contraste/metabolismo , Gadolínio/metabolismo , Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Humanos , Imageamento por Ressonância Magnética/normas , Dermopatia Fibrosante Nefrogênica/diagnóstico por imagem , Dermopatia Fibrosante Nefrogênica/metabolismo , Insuficiência Renal Crônica/metabolismo , Fatores de Risco
3.
Acta Radiol ; 62(2): 206-214, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32366109

RESUMO

BACKGROUND: Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI). Recently, increased signal intensity has been reported in specific brain areas after repeated administrations of GBCAs. PURPOSE: To investigate the toxic effects of GBCAs on neuronal cells by using SH-SY5Y neuroblastoma cell cultures. MATERIAL AND METHODS: For toxicity assays, SH-SY5Y cells were incubated with different doses (0-1000 µM) of several macrocyclic (gadoterate meglumine and gadobutrol) and linear GBCAs (gadoversetamide, gadopentetate dimeglumine, gadodiamide, and gadoxetate disodium) for 48 h. Cell viability and proliferation capacity were evaluated by using MTS assay, LDH assay, and colony-forming assay. In addition, Western blotting of Bcl-2 and Bax proteins and nuclear Hoechst 33258 staining were performed to evaluate apoptotic cell death. The results were expressed as mean ± SEM. The data were analyzed using Student's t-test. A P value < 0.05 was accepted as statistically significant. RESULTS: Both macrocyclic and linear GBCAs significantly and dose-dependently reduced cell viability in neuronal cells compared to control. Cell viability was measured between 89.5% ± 4% and 61% ± 0.7% in GBCA-treated groups. In addition, neurotoxicity was more prominent in linear GBCA-treated cultures (P < 0.0005). Bax protein levels were increased in GBCA-treated cells particularly with linear agents whereas Bcl-2 expression was decreased concomitantly. CONCLUSION: The results of the present study indicated that exposure to specific GBCAs, even at low micro-molar concentrations, may have detrimental effects on neuronal survival. Further investigations are required to clarify the molecular mechanism underlying GBCA-induced cell death.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/efeitos adversos , Gadolínio/toxicidade , Neurônios/efeitos dos fármacos , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos
4.
Anal Bioanal Chem ; 411(3): 629-637, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456604

RESUMO

Drug biodistribution analyses can be considered a key issue in pharmaceutical discovery and development. Here, mass spectrometric imaging can be employed as a powerful tool to investigate distributions of drug compounds in biologically and medically relevant tissue sections. Both matrix-assisted laser desorption ionization-mass spectrometric imaging as molecular method and laser ablation inductively coupled plasma-mass spectrometric imaging as elemental detection method were applied to determine drug distributions in tissue thin sections. Several mouse organs including the heart, kidney, liver, and brain were analyzed with regard to distribution of Gadovist™, a gadolinium-based contrast agent already approved for clinical investigation. This work demonstrated the successful detection and localization of Gadovist™ in several organs. Furthermore, the results gave evidence that gadolinium-based contrast agents in general can be well analyzed by mass spectrometric imaging methods. In conclusion, the combined application of molecular and elemental mass spectrometry could complement each other and thus confirm analytical results or provide additional information.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Lasers , Espectrometria de Massas/métodos , Compostos Organometálicos/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Gadolínio/sangue , Rim/metabolismo , Fígado/metabolismo , Camundongos , Imagem Molecular , Miocárdio/metabolismo , Compostos Organometálicos/sangue , Distribuição Tecidual
5.
Magn Reson Med ; 78(4): 1523-1532, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27791281

RESUMO

PURPOSE: To dissect the contributions to the longitudinal relaxivity (r1 ) of two commercial contrast agents (CAs), Gd-DOTA and Gd-HP-DO3A, and to synthesize/characterize a novel macrocyclic agent (Gd-Phen-DO3A) having superior r1 . METHODS: Longitudinal relaxation rates R1 of the CAs in saline with/without human serum albumin (HSA), ionized simulated body fluid (i-SBF), viscous simulated body fluid (v-SBF), and human plasma were measured. Results have been interpreted to evince the main determinants to the observed r1 values. RESULTS: In v-SBF or in the presence of HSA, r1 is enhanced for all complexes, reflecting the viscosity increase and a weak interaction with proteins. The CAs further differentiate in plasma, with a relaxivity increase (versus saline) of approximately 1, 1.5, and 2.5 mM-1 s-1 for Gd-DOTA, Gd-HPDO3A, and Gd-Phen-DO3A, respectively. R1 versus pH curves in i-SBF indicates that prototropic exchange sizably contributes to the relaxivity of Gd-HP-DO3A and Gd-Phen-DO3A. CONCLUSION: The major contributions to r1 in the physiological environment have been highlighted, namely, increased viscosity, complex-protein interaction, and prototropic exchange. The control of these terms allows the design of novel macrocyclic structures with enhanced r1 as a result of an improved interaction with plasma's macromolecules and the shift of the prototropic exchange to physiological pH. Magn Reson Med 78:1523-1532, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Meios de Contraste/química , Compostos Heterocíclicos/química , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/química , Meios de Contraste/análise , Meios de Contraste/metabolismo , Compostos Heterocíclicos/sangue , Compostos Heterocíclicos/metabolismo , Humanos , Modelos Biológicos , Compostos Organometálicos/sangue , Compostos Organometálicos/metabolismo , Ligação Proteica , Albumina Sérica/química , Albumina Sérica/metabolismo , Viscosidade
6.
Med Phys ; 51(7): 4888-4897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421681

RESUMO

BACKGROUND: Gadolinium-based contrast agents are commonly used in brain magnetic resonance imaging (MRI), however, they cannot be used by patients with allergic reactions or poor renal function. For long-term follow-up patients, gadolinium deposition in the body can cause nephrogenic systemic fibrosis and other potential risks. PURPOSE: Developing a new method of enhanced image synthesis based on the advantages of multisequence MRI has important clinical value for these patients. In this paper, an end-to-end synthesis model structure similarity index measure (SSIM)-based Dual Constrastive Learning with Attention (SDACL) based on contrastive learning is proposed to synthesize contrast-enhanced T1 (T1ce) using three unenhanced MRI images of T1, T2, and Flair in patients with glioma. METHODS: The model uses the attention-dilation generator to enlarge the receptive field by expanding the residual blocks and to strengthen the feature representation and context learning of multisequence MRI. To enhance the detail and texture performance of the imaged tumor area, a comprehensive loss function combining patch-level contrast loss and structural similarity loss is created, which can effectively suppress noise and ensure the consistency of synthesized images and real images. RESULTS: The normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and SSIM of the model on the independent test set are 0.307  ± $\pm$  0.12, 23.337  ± $\pm$  3.21, and 0.881  ± $\pm$  0.05, respectively. CONCLUSIONS: Results show this method can be used for the multisequence synthesis of T1ce images, which can provide valuable information for clinical diagnosis.


Assuntos
Meios de Contraste , Gadolínio , Glioma , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem
7.
Birth Defects Res ; 116(1): e2284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158745

RESUMO

INTRODUCTION: Seven gadolinium-based contrast agents (GBCAs), four linear and three macrocyclic, were evaluated for potential effects on development, including behavior of juvenile CD-1 mice. METHODS: The GBCAs were administered via intravenous injection once daily on postnatal day (PND) 9, 12, 15, 18, and 21 (PND 1 was the day of delivery) at doses up to twice the human equivalent clinical dose (i.e., 0.63 mmol Gd/kg for gadoxetate disodium and 2.5 mmol Gd/kg for the other GBCAs). Mice were bled for evaluation of exposure (plasma) to gadolinium (Gd) on PND 9, 12, and 70. At scheduled euthanasia, the liver, spleen, brain, skin (dorsal surface), bone (left femur), and kidneys were excised from up to six mice/sex/group on PND 10, 22, or 70 for the determination of Gd levels and histopathological analysis. All mice were monitored for toxicity, growth and survival, sexual maturation, and behavior. CONCLUSION: Gd was quantifiable in the brain tissues with levels declining over time. There was no long-term effect on the growth and development for mice exposed to any of the GBCAs. There was no impact on neurodevelopment as assessed by brain histology and validated neurobehavioral tests, including a functional observational battery, motor activity, and learning and memory as evaluated in the Morris water maze. For all GBCAs, the highest dose tested represented the no-observable-adverse-effect level in juvenile mice.


Assuntos
Meios de Contraste , Compostos Organometálicos , Camundongos , Humanos , Animais , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Compostos Organometálicos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo
8.
Birth Defects Res ; 116(1): e2291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158716

RESUMO

INTRODUCTION: The offspring of CD-1 mice exposed during pregnancy to one of seven gadolinium-based contrast agents (GBCAs) were evaluated for potential effects on postnatal development and behavior. The GBCAs, comprising four linear (gadopentetate dimeglumine, gadodiamide, gadobenate dimeglumine, and gadoxetate disodium) and three macrocyclic (gadoterate meglumine, gadoteridol, and gadobutrol), were administered via intravenous injection once daily from Gestation Day 6 through 17 following confirmed mating (Day 0) at doses of at least twice the human equivalent recommended clinical dose (i.e., 0.63 mmol Gd/kg for gadoxetate disodium and 2.5 mmol Gd/kg for the other GBCAs). All dams were allowed to deliver naturally. F0 generation females were monitored for maternal toxicity and gadolinium (Gd) levels in blood and brain. Offspring were evaluated for Gd levels in blood and brain at birth and on Day 70 postpartum. F1 generation mice were evaluated for survival and growth preweaning. Selected pups/litter were evaluated postweaning for sexual maturation, growth, and behavior. Gd was quantifiable in the brain of the F1 offspring on PND 1, with levels declining over time. There was no long-term effect of any GBCA on the growth and development of any offspring. There was no impact on neurodevelopment, as assessed by brain histology and validated neurobehavioral tests, including a battery of functional observational tests, motor activity, and learning and memory as evaluated in the Morris water maze. CONCLUSION: At the end of the postweaning period, the highest dose tested was considered the no-observable-adverse-effect level (NOAEL) in the F0 and F1 offspring for all tested GBCAs.


Assuntos
Meios de Contraste , Gadolínio DTPA , Gadolínio , Gravidez , Feminino , Camundongos , Humanos , Animais , Meios de Contraste/efeitos adversos , Gadolínio/toxicidade , Imageamento por Ressonância Magnética , Encéfalo
9.
J Clin Med ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673466

RESUMO

Gadolinium-based contrast agents (GBCAs) have helped to improve the role of magnetic resonance imaging (MRI) for the diagnosis and treatment of diseases. There are currently nine different commercially available gadolinium-based contrast agents (GBCAs) that can be used for body MRI cases, and which are classifiable according to their structures (cyclic or linear) or biodistribution (extracellular-space agents, target/specific-agents, and blood-pool agents). The aim of this review is to illustrate the commercially available MRI contrast agents, their effect on imaging, and adverse reaction on the body, with the goal to lead to their proper selection in different clinical contexts. When we have to choose between the different GBCAs, we have to consider several factors: (1) safety and clinical impact; (2) biodistribution and diagnostic application; (3) higher relaxivity and better lesion detection; (4) higher stability and lower tissue deposit; (5) gadolinium dose/concentration and lower volume injection; (6) pulse sequences and protocol optimization; (7) higher contrast-to-noise ratio at 3.0 T than at 1.5 T. Knowing the patient's clinical information, the relevant GBCAs properties and their effect on body MRI sequences are the key features to perform efficient and high-quality MRI examination.

10.
Cells ; 12(9)2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174704

RESUMO

Gadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation accumulation in the cortical bone tissue, skin, basal ganglia, and cerebellum, potentially leading to a subsequent slow long-term discharge of Gd3+. Gd3+ is a known activator of the TRPC5 channel that is implicated in breast cancer's resistance to chemotherapy. Herein, we found that gadopentetic acid (Gd-DTPA, 1 mM) potentiated the inward and outward currents through TRPC5 channels, which were exogenously expressed in HEK293 cells. Gd-DTPA (1 mM) also activated the Gd3+-sensitive R593A mutant of TRPC5, which exhibits a reduced sensitivity to GPCR-Gq/11-PLC dependent gating. Conversely, Gd-DTPA had no effect on TRPC5-E543Q, a Gd3+ insensitive TRPC5 mutant. Long-term treatment (28 days) of human breast cancer cells (MCF-7 and SK-BR-3) and adriamycin-resistant MCF-7 cells (MCF-7/ADM) with Gd-DTPA (1 mM) or gadodiamide (GDD, 1 mM) did not affect the IC50 values of ADM. However, treatment with Gd-DTPA or GDD significantly increased TRPC5 expression and decreased the accumulation of ADM in the nuclei of MCF-7 and SK-BR-3 cells, promoting the survival of these two breast cancer cells in the presence of ADM. The antagonist of TRPC5, AC1903 (1 µM), increased ADM nuclear accumulation induced by Gd-DTPA-treatment. These data indicate that prolonged GBCA treatment may lead to increased breast cancer cell survival owing to the upregulation of TRPC5 expression and the increased ADM resistance. We propose that while focusing on providing medical care of the best personalized quality in the clinic, excessive administration of GBCAs should be avoided in patients with metastatic breast cancer to reduce the risk of promoting breast cancer cell drug resistance.


Assuntos
Neoplasias da Mama , Compostos Organometálicos , Humanos , Feminino , Gadolínio DTPA/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Gadolínio/farmacologia , Gadolínio/metabolismo , Células HEK293 , Meios de Contraste/farmacologia , Canais de Cátion TRPC/metabolismo
11.
Front Neuroimaging ; 2: 1055463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554645

RESUMO

Gadolinium-based contrast agents (GBCAs) have become a crucial part of MRI acquisitions in neuro-oncology for the detection, characterization and monitoring of brain tumors. However, contrast-enhanced (CE) acquisitions not only raise safety concerns, but also lead to patient discomfort, the need of more skilled manpower and cost increase. Recently, several proposed deep learning works intend to reduce, or even eliminate, the need of GBCAs. This study reviews the published works related to the synthesis of CE images from low-dose and/or their native -non CE- counterparts. The data, type of neural network, and number of input modalities for each method are summarized as well as the evaluation methods. Based on this analysis, we discuss the main issues that these methods need to overcome in order to become suitable for their clinical usage. We also hypothesize some future trends that research on this topic may follow.

12.
Toxicol Lett ; 383: 196-203, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437671

RESUMO

Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to improve the sensitivity and enhance diagnostic performance. GBCAs are mostly eliminated from the body through the kidney after administration; however small amounts of gadolinium are retained in the brain and other tissues. Although there is increasing concern about the adverse health effects of gadolinium, the cellular effects of GBCAs remains poorly understood. Here, we elucidated the potential cytotoxicity of the GBCAs Omniscan and Gadovist in 12 different cell lines, especially 3T3-L1 adipocyte cell line. Omniscan and Gadovist treatments significantly increased intracellular gadolinium levels in 3T3-L1 cells in a time- and dose-dependent manner. Additionally, Omniscan and Gadovist treatments downregulated the expression of adipocyte differentiation markers, including peroxisome proliferator-activated receptor γ (PPARG), adiponectin (ADIPOQ), and fatty acid-binding protein (FABP4), in 3T3-L1 cells, especially during early differentiation (day 0-2). Moreover, histological analysis using Oil red O staining showed that gadolinium chloride (GdCl3) treatment suppressed lipid droplet accumulation and the expression of adipocyte differentiation markers. Overall, the results showed that Omniscan and Gadovist treatment suppressed adipocyte differentiation in 3T3-L1 cells, contributing to the understanding of the potential toxic effects of GBCA exposure.


Assuntos
Meios de Contraste , Gadolínio , Camundongos , Animais , Meios de Contraste/toxicidade , Células 3T3-L1 , Gadolínio/toxicidade , Diferenciação Celular , Adipócitos , PPAR gama/metabolismo , Imageamento por Ressonância Magnética , Adipogenia
13.
Clin Imaging ; 92: 57-62, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202017

RESUMO

OBJECTIVES: Multiple exposures to gadolinium-based contrast agents (GBCAs) is known to be associated with gadolinium deposition in the brain in certain patients. Such deposition has been correlated with specific brain MRI findings, although most available data is in patients with underlying neurologic disorders. We aim to prospectively evaluate brain MRI signal changes as well as neurologic and neuropsychologic testing results in women undergoing screening breast MRI. METHODS: In this IRB-approved, HIPAA-compliant prospective study, 9 women with 5 or more exposures to linear and/or macrocyclic GBCA due to screening breast MRI underwent noncontrast brain MRI, neurologic exam and neuropsychologic testing. Women with underlying neurologic, psychologic, hepatic or renal disorders were excluded. RESULTS: The mean total number of GBCA exposures was 8 (standard deviation 2.7), with 63/72 (87%) of the exposures being linear agents. There was no association between brain MRI signal changes and abnormalities on neurologic or neuropsychologic examination. There was no association between total number of GBCA exposures and abnormalities on neurologic or neuropsychologic examination. CONCLUSION: In this prospective exploratory study of 9 women with 5 or more GBCA exposures due to screening breast MRI, there was no association between brain MRI signal changes and clinical abnormalities on neurologic or neuropsychologic examination. While larger studies are needed in this patient population, the lack of clinical impact of multiple GBCA exposures in this study is reassuring.


Assuntos
Meios de Contraste , Compostos Organometálicos , Humanos , Feminino , Meios de Contraste/efeitos adversos , Gadolínio , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Estudos Retrospectivos
14.
Med Phys ; 49(7): 4478-4493, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396712

RESUMO

PURPOSE: Gadolinium-based contrast agents (GBCAs) have been successfully applied in magnetic resonance (MR) imaging to facilitate better lesion visualization. However, gadolinium deposition in the human brain raised widespread concerns recently. On the other hand, although high-resolution three-dimensional (3D) MR images are more desired for most existing medical image processing algorithms, their long scan duration and high acquiring costs make 2D MR images still much more common clinically. Therefore, developing alternative solutions for 3D contrast-enhanced MR image synthesis to replace GBCAs injection becomes an urgent requirement. METHODS: This study proposed a deep learning framework that produces 3D isotropic full-contrast T2Flair images from 2D anisotropic noncontrast T2Flair image stacks. The super-resolution (SR) and contrast-enhanced (CE) synthesis tasks are completed in sequence by using an identical generative adversarial network (GAN) with the same techniques. To solve the problem that intramodality datasets from different scanners have specific combinations of orientations, contrasts, and resolutions, we conducted a region-based data augmentation technique on the fly during training to simulate various imaging protocols in the clinic. We further improved our network by introducing atrous spatial pyramid pooling, enhanced residual blocks, and deep supervision for better quantitative and qualitative results. RESULTS: Our proposed method achieved superior CE-synthesized performance in quantitative metrics and perceptual evaluation. In detail, the PSNR, structural-similarity-index, and AUC are 32.25 dB, 0.932, and 0.991 in the whole brain and 24.93 dB, 0.851, and 0.929 in tumor regions. The radiologists' evaluations confirmed that our proposed method has high confidence in the diagnosis. Analysis of the generalization ability showed that benefiting from the proposed data augmentation technique, our network can be applied to "unseen" datasets with slight drops in quantitative and qualitative results. CONCLUSION: Our work demonstrates the clinical potential of synthesizing diagnostic 3D isotropic CE brain MR images from a single 2D anisotropic noncontrast sequence.


Assuntos
Aprendizado Profundo , Meios de Contraste , Gadolínio , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos
15.
Toxics ; 10(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35202243

RESUMO

Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.

16.
Saudi J Med Med Sci ; 10(1): 12-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283709

RESUMO

Over the past five years, several studies have reported deposition and retention of gadolinium in the brain after administration of gadolinium-based contrast agents (GBCAs) during radiological procedures. Patients with renal insufficiency cannot filter gadolinium efficiently; however, gadolinium is also retained in the brain of some adults and pediatrics with no renal impairment. In the literature, data is mostly available from retrospective magnetic resonance imaging (MRI) studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity in the brain tissues, particularly in the deep gray matter such as the dentate nucleus and/or globus pallidus. Many pathological studies have reported a direct correlation between T1 signal changes and gadolinium deposition in human and animal autopsy specimens, which raised concerns on the use of GBCAs, particularly with linear chelators. The association between gadolinium accumulation and occurrence of physical and neurological side effects or neurotoxic damage has not yet been conclusively demonstrated. Studies have also observed that gadolinium is deposited in the extracranial tissues, such as the liver, skin, and bone, of patients with normal kidney function. This narrative review describes the effects of different types of GBCAs in relation to gadolinium deposition, evaluates current evidence on gadolinium deposition in various tissues of the human body, and summarizes the current recommendations regarding the use of GBCAs.

17.
Biochem Biophys Rep ; 29: 101217, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128083

RESUMO

Gadolinium-based contrast agents (GBCAs) are widely used to improve tissue contrast during magnetic resonance imaging. Exposure to GBCAs can result in gadolinium deposition within human tissues and has become a clinical concern because of the potential toxic effects of free gadolinium (Gd3+). Here, we report the impact of a single administration of GBCAs (Omniscan and Gadovist), and Gd3+ on mouse tissues. Five-week-old male BALB/c mice were injected intravenously with GBCAs or Gd3+. Seven days after injection, relatively high levels of gadolinium were detected in the spleen (118.87 nmol/g tissue), liver (83.00 nmol/g tissue), skin (48.56 nmol/g tissue), and kidneys (25.59 nmol/g tissue) of the Gd(NO3)3 (high dose: 0.165 mmol/kg) group; in the bones (11.12 nmol/g tissue), kidneys (7.49 nmol/g tissue), teeth (teeth: 6.18 nmol/g tissue), and skin (2.43 nmol/g tissue) of the Omniscan (high dose: 1.654 mmol/kg) group and in the kidneys (16.36 nmol/g tissue) and skin (4.88 nmol/g tissue) of the Gadovist (high dose: 3.308 mmol/kg) group. Enlargement of the spleen was observed in the Gd3+ group (p < 0.05), but not in the Omniscan or Gadovist groups. Gd3+ caused iron accumulation around the white pulp of the spleen, suggesting that enlargement of the spleen is, at least in part, associated with Gd3+ and/or iron accumulation. Our results may help elucidate the relative risks of different types of gadolinium agents, the mechanisms involved, and even recognition of potential toxic effects of GBCAs.

18.
Toxicol Lett ; 301: 157-167, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30476537

RESUMO

Gadolinium deposition in tissue is linked to nephrogenic systemic fibrosis (NSF): a rare disorder occurring in patients with severe chronic kidney disease and associated with administration of Gd-based contrast agents (GBCAs) for Magnetic Resonance Imaging (MRI). It is suggested that the GBCAs prolonged permanence in blood in these patients may result in a Gd precipitation in peripheral or central organs, where it initiates a fibrotic process. In this study we investigated new sites of retention/precipitation of Gd in a mouse model of renal disease (5/6 nephrectomy) receiving two doses (closely after each other) of a linear GBCA. Two commercial GBCAs (Omniscan® and Magnevist®) were administered at doses slightly higher than those used in clinical practice (0.7 mmol/kg body weight, each). The animals were sacrificed one month after the last administration and the explanted organs (kidney, liver, femur, dorsal skin, teeth) were analysed by X-ray fluorescence (XRF) at two synchrotron facilities. The XRF analysis with a millimetre-sized beam at the SYRMEP beamline (Elettra, Italy) produced no detectable levels of Gd in the examined tissues, with the notable exception of the incisors of the nephrectomised mice. The XRF analyses at sub-micron resolution performed at ID21 (ESRF, France) allowed to clearly localize Gd in the periodontal ligaments of teeth both from Omniscan® and Magnevist® treated nephrectomised mice. The latter results were further confirmed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study prompts that prolonged permanence of GBCAs in blood may result in Gd retention in this particular muscular tissue, opening possibilities for diagnostic applications at this level when investigating Gd-related toxicities.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Ligamento Periodontal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Gadolínio DTPA/farmacocinética , Imageamento por Ressonância Magnética , Camundongos , Dermopatia Fibrosante Nefrogênica/induzido quimicamente , Dermopatia Fibrosante Nefrogênica/patologia , Ligamento Periodontal/metabolismo , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/patologia , Distribuição Tecidual
19.
Front Oncol ; 9: 1351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850230

RESUMO

MR molecular imaging (MRMI) of abundant oncogenic biomarkers in tumor microenvironment has the potential to provide precision cancer imaging in high resolution. Extradomain-B fibronectin (EDB-FN) is an oncogenic extracellular matrix protein, highly expressed in aggressive triple negative breast cancer. A targeted macrocyclic gadolinium-based contrast agent (GBCA) ZD2-N3-Gd(HP-DO3A) (MT218), specific to EDB-FN, was developed for MRMI of aggressive breast cancer. The effectiveness of different doses of MT218 for MRMI was tested in MDA-MB-231 and Hs578T human triple negative breast cancer models. At clinical dose of 0.1 and subclinical dose of 0.04 mmol Gd/kg, MT218 rapidly bound to the extracellular matrix EDB-FN and produced robust tumor contrast enhancement in both the tumor models, as early as 1-30 min post-injection. Substantial tumor enhancement was also observed in both the models with MT218 at doses as low as 0.02 mmol Gd/kg, which was significantly better than the clinical agent Gd(HP-DO3A) at 0.1 mmol Gd/kg. Little non-specific enhancement was observed in the normal tissues including liver, spleen, and brain for MT218 at all the tested doses, with renal clearance at 30 min. These results demonstrate that MRMI with reduced doses of MT218 is safe and effective for sensitive and specific imaging of aggressive breast cancers.

20.
ChemMedChem ; 13(8): 824-834, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29442438

RESUMO

A dinuclear gadolinium(III) chelate containing two moieties of diethylenetriaminepentaacetic acid (DTPA), covalently conjugated to an analogue of deoxycholic acid, was synthesized and thoroughly characterized. A full relaxometric analysis was carried out, consisting of 1) the acquisition of nuclear magnetic resonance dispersion (NMRD) profiles in various media; 2) the study of binding affinity to serum albumin; 3) the measurement of 17 O transverse relaxation rate versus temperature, and 4) a transmetallation assay. In vivo biodistribution MRI studies at 1 T and blood pharmacokinetics assays were carried out in comparison with Gd-DTPA (Magnevist) and gadocoletic acid trisodium salt (B22956/1), two well-known Gd complexes that share the same chelating cage and the same deoxycholic acid residue of the Gd complex investigated herein ((GdDTPA)2 -Chol). High affinity for plasma protein and, in particular, the availability of more than one binding site, allows the complex to reach a fairly high relaxivity value in plasma (∼20 mm-1 s-1 , 20 MHz, 310 K) as well as to show unexpectedly enhanced properties of blood pooling, with an elimination half-life in rats approximately seven times longer than that of B22956/1.


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacocinética , Ácido Desoxicólico/análogos & derivados , Ácido Desoxicólico/farmacocinética , Gadolínio DTPA/análogos & derivados , Gadolínio DTPA/farmacocinética , Animais , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Ácido Desoxicólico/síntese química , Ácido Desoxicólico/metabolismo , Feminino , Gadolínio DTPA/síntese química , Gadolínio DTPA/metabolismo , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Wistar , Albumina Sérica/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA