Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 440(1): 114118, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852763

RESUMO

Autophagy phenomenon in the cell maintains proteostasis balance by eliminating damaged organelles and protein aggregates. Imbalance in autophagic flux may cause accumulation of protein aggregates in various neurodegenerative disorders. Regulation of autophagy by either calcium or chaperone play a key role in the removal of protein aggregates from the cell. The neuromuscular rare genetic disorder, GNE Myopathy, is characterized by accumulation of rimmed vacuoles having protein aggregates of ß-amyloid and tau that may result from altered autophagic flux. In the present study, the autophagic flux was deciphered in HEK cell-based model for GNE Myopathy harbouring GNE mutations of Indian origin. The refolding activity of HSP70 chaperone was found to be reduced in GNE mutant cells compared to wild type controls. The autophagic markers LC3II/I ratio was altered with increased number of autophagosome formation in GNE mutant cells compared to wild type cells. The cytosolic calcium levels were also increased in GNE mutant cells of Indian origin. Interestingly, treatment of GNE mutant cells with HSP70 activator, BGP-15, restored the expression and refolding activity of HSP70 along with autophagosome formation. Treatment with calcium chelator, BAPTA-AM restored the cytoplasmic calcium levels and autophagosome formation but not LC3II/I ratio significantly. Our study provides insights towards GNE mutation specific response for autophagy regulation and opens up a therapeutic advancement area in calcium signalling and HSP70 function for GNE related Myopathy.


Assuntos
Autofagia , Cálcio , Miopatias Distais , Proteínas de Choque Térmico HSP70 , Complexos Multienzimáticos , Mutação , Humanos , Autofagia/genética , Autofagia/efeitos dos fármacos , Mutação/genética , Cálcio/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Células HEK293 , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Índia
2.
Glycobiology ; 34(3)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224318

RESUMO

GNE myopathy (GNEM) is a late-onset muscle atrophy, caused by mutations in the gene for the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). With an incidence of one to nine cases per million it is an ultra-rare, so far untreatable, autosomal recessive disease. Several attempts have been made to treat GNEM patients by oral supplementation with sialic acid precursors (e.g. N-acetylmannosamine, ManNAc) to restore sarcolemmal sialylation and muscle strength. In most studies, however, no significant improvement was observed. The lack of a suitable mouse model makes it difficult to understand the exact pathomechanism of GNEM and many years of research have failed to identify the role of GNE in skeletal muscle due to the lack of appropriate tools. We established a CRISPR/Cas9-mediated Gne-knockout cell line using murine C2C12 cells to gain insight into the actual role of the GNE enzyme and sialylation in a muscular context. The main aspect of this study was to evaluate the therapeutic potential of ManNAc and N-acetylneuraminic acid (Neu5Ac). Treatment of Gne-deficient C2C12 cells with Neu5Ac, but not with ManNAc, showed a restoration of the sialylation level back to wild type levels-albeit only with long-term treatment, which could explain the rather low therapeutic potential. We furthermore highlight the importance of sialic acids on myogenesis, for C2C12 Gne-knockout myoblasts lack the ability to differentiate into mature myotubes.


Assuntos
Miopatias Distais , Hexosaminas , Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Desenvolvimento Muscular/genética , Suplementos Nutricionais
3.
Muscle Nerve ; 69(6): 708-718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558464

RESUMO

INTRODUCTION/AIMS: GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS: Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS: A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION: The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.


Assuntos
Éxons , Íntrons , Complexos Multienzimáticos , Trombocitopenia , Humanos , Masculino , Feminino , Complexos Multienzimáticos/genética , Éxons/genética , Íntrons/genética , Adulto , Trombocitopenia/genética , Miopatias Distais/genética , Adulto Jovem , Adolescente , Criança , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Pessoa de Meia-Idade
4.
Gene ; 927: 148750, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971548

RESUMO

Distal myopathies are a group of rare heterogeneous diseases that are mostly caused by genetic factors. At least 20 genes have been associated with distal myopathies. We performed whole-exome sequencing to identify the genetic cause of disease in a family with distal myopathy. Following the American College of Medical Genetics and Genomics (ACMG) guidelines, we analyzed the sequencing results and screened suspicious mutations based on mutation frequency, functional impact, and disease inheritance pattern. The harmfulness of the mutations was predicted using bioinformatics methods, and the pathogenic mutations were determined. We identified a novel amino acid mutation (NP_005467.1:p.S663L) on the GNE gene that may cause familial distal myopathy. This mutation is the result of the simultaneous mutation of two adjacent nucleotides (c.1988C > T, c.1989C > A) in the codon. First, we measured the mRNA and protein expression of the GNE gene in the lymphoblastoid cell lines (LCLs) of the probands and their family members. Second, GNE vectors carrying the novel mutation, two other known pathogenic mutations, and the wild-type gene were constructed and transfected into HEK293T cells. The enzymatic activity of these GNE variants was investigated and showed that the p.S663L mutation significantly reduced the activity of the bifunctional GNE enzyme without altering the expression level of the GNE protein. Furthermore, the mutation may also alter the immunogenicity of the 3' end of the GNE protein, potentially affecting its oligomer formation. In this study, a novel GNE gene mutation that may cause distal myopathy was identified, expanding the spectrum of genetic mutations associated with this disease.


Assuntos
Miopatias Distais , Complexos Multienzimáticos , Linhagem , Humanos , Masculino , Feminino , Células HEK293 , Miopatias Distais/genética , Complexos Multienzimáticos/genética , Mutação , Adulto , Sequenciamento do Exoma/métodos , Pessoa de Meia-Idade
5.
Biochem Pharmacol ; 223: 116199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604256

RESUMO

GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of ß1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM­GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM­GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM­GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM­GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM­GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.


Assuntos
Miopatias Distais , Ácido N-Acetilneuramínico , Oximas , Piperidinas , Animais , Ratos , Actinas/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/genética , Fator de Crescimento Insulin-Like I , Mutação , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Racemases e Epimerases/genética
6.
J Neurol ; 271(7): 4453-4461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38691167

RESUMO

BACKGROUND: GNE myopathy is an ultra-rare autosomal recessive distal myopathy caused by pathogenic variants of the GNE gene, which encodes a key enzyme in sialic acid biosynthesis. The present study aimed to examine the long-term progression of GNE myopathy, genotype-phenotype correlations, and complications to provide useful information for predicting patient progression and designing clinical trials using a large collection of registry data over a 10-year period. METHODS: We analyzed 220 Japanese patients with GNE myopathy from a national registry in Japan. Diagnoses were confirmed by genetic curators based on genetic analysis reports. We analyzed registration sheets and annually updated items completed by attending physicians. RESULTS: In total, 197 of 220 participants (89.5%) carried p.D207V or p.V603L in at least one allele. The median disease duration to loss of ambulation was estimated to be 10 years in p.V603L homozygotes (n = 48), whereas more than 90% of p.D207V/p.V603L compound heterozygotes were estimated to be ambulatory even 20 years after disease onset according to Kaplan-Meier analysis (p < 0.001). Moreover, participants with a younger age of onset lost ambulation earlier regardless of genotype. A decline in respiratory function was observed as the disease progressed, particularly in p.V603L homozygotes, whereas none of the p.D207V/p.V603L compound heterozygotes showed a decline. CONCLUSIONS: The present study demonstrated large differences in disease progression and respiratory function between genotypes. Moreover, age of onset was found to be an indicator of disease severity regardless of genotype in GNE myopathy patients. These results may help stratify patients in clinical trials and predict disease progression.


Assuntos
Progressão da Doença , Miopatias Distais , Genótipo , Complexos Multienzimáticos , Fenótipo , Sistema de Registros , Humanos , Masculino , Feminino , Japão , Adulto , Miopatias Distais/genética , Miopatias Distais/fisiopatologia , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Adulto Jovem , Estudos de Associação Genética , Adolescente , Idade de Início , Idoso
7.
J Neuromuscul Dis ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38875046

RESUMO

Background: GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective: To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods: A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results: Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions: We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA