Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286627

RESUMO

Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.


Assuntos
Antipsicóticos , Transtornos Parkinsonianos , Receptores de Neurotransmissores , Humanos , Camundongos , Masculino , Animais , Cricetinae , Haloperidol/farmacologia , Levodopa/efeitos adversos , Catalepsia/induzido quimicamente , Células CHO , Cricetulus , Antipsicóticos/efeitos adversos , Interneurônios/metabolismo , Colinérgicos/farmacologia , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
Apoptosis ; 29(3-4): 372-392, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37945816

RESUMO

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive and life-threatening skin cancer. G-protein coupled receptor 143 (GPR143) belongs to the superfamily of G protein-coupled receptors. METHODS: We used the TCGA, GTEx, CCLE, and the Human Protein Atlas databases to examine the mRNA and protein expression of GPR143. In addition, we performed a survival analysis and evaluated the diagnostic efficacy using the Receiver-Operating Characteristic (ROC) curve. Through CIBERSORT, R programming, TIMER, Gene Expression Profiling Interactive Analysis, Sangerbox, and Kaplan-Meier plotter database analyses, we explored the relationships between GPR143, immune infiltration, and gene marker expression of immune infiltrated cells. Furthermore, we investigated the proteins that potentially interact with GPR143 and their functions using R programming and databases including STRING, GeneMANIA, and GSEA. Meanwhile, the cBioPortal, UALCNA, and the MethSurv databases were used to examine the genomic alteration and methylation of GPR143 in SKCM. The Connectivity Map database was used to discover potentially effective therapeutic molecules against SKCM. Finally, we conducted cell experiments to investigate the potential role of GPR143 in SKCM. RESULTS: We demonstrated a significantly high expression level of GPR143 in SKCM compared with normal tissues. High GPR143 expression and hypomethylation status of GPR143 were associated with a poorer prognosis. ROC analysis showed that the diagnostic efficacy of the GPR143 was 0.900. Furthermore, GPR143 expression was significantly correlated with immune infiltration in SKCM. We identified 20 neighbor genes and the pathways they enriched were anabolic process of pigmentation, immune regulation, and so on. Genomic alteration analysis revealed significantly different copy number variations related to GPR143 expression in SKCM, and shallow deletion could lead to high expression of GPR143. Ten potential therapeutic drugs against SKCM were identified. GPR143 knockdown inhibited melanoma cell proliferation, migration, and colony formation while promoting apoptosis. CONCLUSIONS: Our findings suggest that GPR143 serves as a novel diagnostic and prognostic biomarker and is associated with the progression of SKCM.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Variações do Número de Cópias de DNA , Apoptose , Biologia Computacional , Proteínas do Olho , Glicoproteínas de Membrana
3.
J Pharmacol Sci ; 156(1): 45-48, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068034

RESUMO

The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).


Assuntos
Canais de Cálcio Tipo L , Crescimento Neuronal , Nifedipino , Receptores Acoplados a Proteínas G , Células PC12 , Animais , Ratos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Nifedipino/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Humanos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Flunarizina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Levodopa/farmacologia , Técnicas de Silenciamento de Genes , Neuritos/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Glicoproteínas de Membrana
4.
J Neurochem ; 165(2): 177-195, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807226

RESUMO

Dopamine (DA) is involved in neurological and physiological functions such as motor control. L-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of DA, is conventionally believed to be an inert amino acid precursor of DA, and its major therapeutic effects in Parkinson's disease (PD) are mediated through its conversion to DA. On the contrary, accumulating evidence suggests that L-DOPA itself is a neurotransmitter. We here show that L-DOPA potentiates DA D2 receptor (DRD2) signaling through GPR143, the gene product of X-linked ocular albinism 1, a G-protein-coupled receptor for L-DOPA. In Gpr143-gene-deficient (Gpr143-/y ) mice, quinpirole, a DRD2/DRD3 agonist, -induced hypolocomotion was attenuated compared to wild-type (WT) mice. Administration of non-effective dose of L-DOPA methyl ester augmented the quinpirole-induced hypolocomotion in WT mice but not in Gpr143-/y mice. In cells co-expressing GPR143 and DRD2, L-DOPA enhanced the interaction between GPR143 and DRD2 and augmented quinpirole-induced decrease in cAMP levels. This augmentation by L-DOPA was not observed in cells co-expressing GPR143 and DRD1 or DRD3. Chimeric analysis in which the domain of GPR143 was replaced with GPR37 revealed that GPR143 interacted with DRD2 at the fifth transmembrane domain. Intracerebroventricular administration of a peptide that disrupted the interaction mitigated quinpirole-induced behavioral changes in WT mice but not in Gpr143-/y mice. These findings provide evidence that coupling between GPR143 and DRD2 is required for selective DRD2 modulation by L-DOPA in the dorsal striatum.


Assuntos
Levodopa , Doença de Parkinson , Receptores de Dopamina D2 , Animais , Camundongos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Levodopa/farmacologia , Doença de Parkinson/metabolismo , Quimpirol/farmacologia , Quimpirol/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Stem Cells ; 40(2): 215-226, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257172

RESUMO

Neurogenesis occurs in the hippocampus throughout life and is implicated in various physiological brain functions such as memory encoding and mood regulation. L-3,4-dihydroxyphenylalanine (L-DOPA) has long been believed to be an inert precursor of dopamine. Here, we show that L-DOPA and its receptor, GPR143, the gene product of ocular albinism 1, regulate neurogenesis in the dentate gyrus (DG) in a dopamine-independent manner. L-DOPA at concentrations far lower than that of dopamine promoted proliferation of neural stem and progenitor cells in wild-type mice under the inhibition of its conversion to dopamine; this effect was abolished in GPR143 gene-deficient (Gpr143-/y) mice. Hippocampal neurogenesis decreased during development and adulthood, and exacerbated depression-like behavior was observed in adult Gpr143-/y mice. Replenishment of GPR143 in the DG attenuated the impaired neurogenesis and depression-like behavior. Our findings suggest that L-DOPA through GPR143 modulates hippocampal neurogenesis, thereby playing a role in mood regulation in the hippocampus.


Assuntos
Dopamina , Levodopa , Animais , Hipocampo/metabolismo , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
J Pharmacol Sci ; 152(3): 178-181, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257945

RESUMO

Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Metilfenidato , Camundongos , Animais , Metilfenidato/farmacologia , Levodopa/farmacologia , Receptores de Neurotransmissores , Dopamina/metabolismo , Metanfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia
7.
Biol Pharm Bull ; 46(7): 869-873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394637

RESUMO

Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.


Assuntos
Adrenérgicos , Di-Hidroxifenilalanina , Glicoproteínas de Membrana , Receptores Adrenérgicos alfa 1 , Humanos , MAP Quinases Reguladas por Sinal Extracelular , Proteínas do Olho , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Fenilefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo
8.
Adv Exp Med Biol ; 1415: 43-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440012

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the developed world. Caucasians are eightfold more likely to develop AMD than any other race, indicating a racial bias in AMD incidence which is unexplained. We hypothesize that pigmentation of the retinal pigment epithelium (RPE) and choroid protects from AMD and underlies this peculiar racial bias. We investigated GPR143, a receptor in the pigmentation pathway, which is activated by a melanin synthesis by-product, l-dopa. In this model, greater pigmentation leads to greater l-dopa production and, in turn, greater GPR143 signaling. GPR143 activity upregulates PEDF and downregulates both VEGF and exosomes; all of which reduce the angiogenic potential in the retina. Moreover, we demonstrate that GPR143 signaling enhances the digestion of shed photoreceptor outer segments. Together, our data suggests a central role for GPR143 signaling in RPE-photoreceptor interaction which is critical to healthy vision.


Assuntos
Levodopa , Degeneração Macular , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Corioide
9.
Ophthalmology ; 129(6): 708-718, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35157951

RESUMO

PURPOSE: To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). DESIGN: Multicenter, observational study. PARTICIPANTS: A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). METHODS: Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. MAIN OUTCOME MEASURES: Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). RESULTS: The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. CONCLUSIONS: We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value.


Assuntos
Albinismo Ocular , Albinismo Oculocutâneo , Albinismo , Defeitos da Visão Cromática , Albinismo Ocular/diagnóstico , Albinismo Ocular/genética , Albinismo Oculocutâneo/diagnóstico , Albinismo Oculocutâneo/genética , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/genética , Proteínas do Citoesqueleto , Fóvea Central/anormalidades , Humanos , Proteínas de Membrana , Transtornos da Visão/diagnóstico
10.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063136

RESUMO

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Monocrotalina/efeitos adversos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/genética , Sístole , Função Ventricular Direita/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Direita/etiologia , Técnicas In Vitro , Masculino , Artéria Pulmonar/fisiologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Disfunção Ventricular Direita/etiologia
11.
BMC Ophthalmol ; 21(1): 156, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785018

RESUMO

BACKGROUND: Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. CASE PRESENTATION: We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. CONCLUSIONS: In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.


Assuntos
Proteínas do Olho , Glicoproteínas de Membrana , China , Proteínas do Olho/genética , Humanos , Glicoproteínas de Membrana/genética , Mutação , Linhagem
12.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361094

RESUMO

Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson's disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by ß-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.


Assuntos
Dopamina/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , beta-Arrestinas/metabolismo , Proteínas do Olho/genética , Humanos , Glicoproteínas de Membrana/genética , Mutação , Ligação Proteica , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Transdução de Sinais
13.
J Pharmacol Sci ; 144(2): 89-93, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763057

RESUMO

l-3,4-dihydroxyphenylalanine (l-DOPA) is a candidate neurotransmitter. l-DOPA is released by nicotine through nicotinic receptors. Recently, G-protein coupled receptor GPR143, was identified as a receptor for l-DOPA. In this study, genetic association studies between GPR143 genetic polymorphisms and smoking behaviors revealed that the single-nucleotide polymorphism rs6640499, in the GPR143 gene, was associated with traits of smoking behaviors in Japanese individuals. In Gpr143 gene-deficient mice, nicotine-induced hypolocomotion and rewarding effect were attenuated compared to those in wild-type mice. Our findings suggest the involvement of GPR143 in the smoking behaviors.


Assuntos
Proteínas do Olho/genética , Deleção de Genes , Estudos de Associação Genética , Glicoproteínas de Membrana/genética , Nicotina/efeitos adversos , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotransmissores/genética , Reforço Psicológico , Transtornos Relacionados ao Uso de Substâncias/genética , Animais , Povo Asiático , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença
14.
J Neurosci Res ; 97(1): 77-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29761529

RESUMO

Albinism, typically characterized by decreased melanin synthesis, is associated with significant visual deficits owing to developmental changes during neurosensory retina development. All albinism is caused by genetic mutations in a group of diverse genes including enzymes, transporters, G-protein coupled receptor. Interestingly, these genes are not expressed in the neurosensory retina. Further, regardless of cause of albinism, all forms of albinism have the same retinal pathology, the extent of which is variable. In this review, we explore the possibility that this similarity in retinal phenotype is because all forms of albinism funnel through the same final common pathway. There are currently seven known genes linked to the seven forms of ocular cutaneous albinism. These types of albinism are the most common, and result in changes to all pigmented tissues (hair, skin, eyes). We will discuss the incidence and mechanism, where known, to develop a picture as to how the mutations cause albinism. Next, we will examine the one form of albinism which causes tissue-specific pathology, ocular albinism, where the eye exhibits the retinal albinism phenotype despite near normal melanin synthesis. We will discuss a potential way to treat the disease and restore normal retinal development. Finally, we will briefly discuss the possibility that this same pathway may intersect with the most common cause of permanent vision loss in the elderly.


Assuntos
Albinismo Ocular/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo , Pigmentação/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Albinismo Ocular/genética , Albinismo Ocular/patologia , Proteínas do Olho/genética , Humanos , Melaninas/biossíntese , Melaninas/genética , Melaninas/metabolismo , Glicoproteínas de Membrana/genética , Mutação , Pigmentação/genética , Retina/metabolismo
15.
Exp Eye Res ; 189: 107819, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574285

RESUMO

PURPOSE: Pathogenic variants of the G-protein coupled receptor 143 (GPR143) gene may result in Ocular albinism type I (OA1). In this study, we describe the clinical features and investigate the GPR143 gene mutations in six Chinese families with OA1 and evaluate the thickness changes of iris for the affected males and female carriers. METHODS: Families were ascertained, and patients underwent complete ophthalmologic examinations, including the best corrected visual acuity (BCVA), anterior segment of the eyes, vitreous and fundus changes. Spectral domain optical coherence tomography (SD-OCT) was used to measure the full iris thickness, the stroma/anterior border (SAB) layer, and the posterior epithelial layer (PEL) at the pupillary and ciliary regions. DNA was extracted from the peripheral blood vessels after confirmed consent information. GPR143 gene was directly sequenced by the Sanger method. RESULTS: The affected males had variable reduced visual acuity, nystagmus and macular hypoplasia. Four novel frameshift mutations and two previously reported missense/nonsense mutations in the GPR143 gene were detected in these families. The thickness of the iris was significantly reduced at the ciliary region in the affected males, compared with that in the normal controls and the female carriers. CONCLUSIONS: Pathogenic variants in the GPR143 gene may disturb the normal melanogenesis in the pigmented tissues of the eye, result in macular hypoplasia, and alter the thickness of the iris.


Assuntos
Albinismo Ocular/genética , Proteínas do Olho/genética , Iris/patologia , Glicoproteínas de Membrana/genética , Mutação , Epitélio Pigmentado Ocular/metabolismo , Adolescente , Adulto , Albinismo Ocular/metabolismo , Albinismo Ocular/patologia , Criança , China , Análise Mutacional de DNA , Proteínas do Olho/metabolismo , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Linhagem , Epitélio Pigmentado Ocular/patologia , Tomografia de Coerência Óptica , Adulto Jovem
16.
J Pharmacol Sci ; 141(1): 41-48, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31606330

RESUMO

Neurite outgrowth is a complex differentiation process regulated by external and/or internal mechanisms. Among external mechanisms, G-protein coupled receptors (GPCRs) have been implicated in this process, but the pathways involved are not fully understood. L-3,4-dihydroxyphenylalanine (l-DOPA) is considered to be inert by itself, and to relieve Parkinson's disease through its conversion to dopamine. We have proposed that l-DOPA acts as a neurotransmitter. GPR143, the gene product of ocular albinism 1 (OA1), was identified as a receptor for l-DOPA. OA1 is an X-linked disorder characterized by all typical visual anomalies associated with hypopigmentation and optic misrouting, resulting in severe reduction of visual acuity. However, the molecular basis for this phenotype remains unknown. To study the function of GPR143, we investigated the phenotypic effect of overexpression of GPR143 in pheochromocytoma (PC12) cells treated with nerve growth factor. Overexpression of mouse GPR143 inhibited neurite outgrowth, and the effect was mitigated by l-DOPA cyclohexylester, an antagonist for l-DOPA. Furthermore, knockdown of G-protein Gα13 attenuated mouse GPR143 induced inhibition of neurite outgrowth. Human wild-type (wt) GPR143 also inhibited neurite outgrowth, but its mutants did not mimic the effect of wt GPR143. Our results provide a mechanism for axon guidance phenotype in ocular albinism 1.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Crescimento Neuronal/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Mutação , Células PC12 , Ratos
17.
Adv Exp Med Biol ; 1185: 15-19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884582

RESUMO

Age-related macular degeneration (AMD) is the most common cause of irreversible blindness. We do not know the cause of the disease and have inadequate prevention and treatment strategies for those at risk or affected. The greatest risk factors include age and race, with the white population at the highest risk for the disease. We developed the hypothesis that pigmentation in the retinal pigment epithelium (RPE) protects darkly pigmented individuals from AMD. We have tested this hypothesis in multiple ways including dissecting the pigmentation pathway in RPE using albinism-related tools, identification of a G protein-coupled receptor in the pigmentation pathway that drives expression of trophic factors, and using a very large retrospective chart analysis to test whether the ligand for the receptor prevents AMD. In total, our results indicate that pigmentation of the RPE is a cornerstone of RPE-retinal interaction and support and that the receptor in the pigmentation pathway most likely underlies the racial bias of the disease. The ligand for that receptor is an ideal candidate as a preventative and treatment for AMD. Here we summarize these results, discussing the research in its entirety with one overall goal, treatment or prevention of AMD.


Assuntos
Proteínas do Olho/metabolismo , Degeneração Macular/fisiopatologia , Glicoproteínas de Membrana/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiologia , Transdução de Sinais , Humanos , Estudos Retrospectivos , Fatores de Risco
18.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906250

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson's disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood-brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These "false neurotransmitters," also known for some of them as inducing an "amphetamine-like" mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to "false neurotransmission."


Assuntos
Corpo Estriado , Dopamina/metabolismo , Levodopa/uso terapêutico , Neurotransmissores/metabolismo , Doença de Parkinson , Neurônios Serotoninérgicos , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia
19.
Am J Med Genet A ; 176(7): 1587-1593, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30160833

RESUMO

Ocular albinism type 1 (OA1) is caused by mutations in the GPR143 gene located at Xp22.2. The manifestations, which are due to hypopigmentation, are confined to the eyes and optic pathway. OA1 associated with late-onset sensorineural hearing loss was previously reported in a single family and hypothesized to be caused by a contiguous gene deletion syndrome involving GPR143 and the adjacent gene, TBL1X. Here, we report on a family with OA1, infertility, late-onset sensorineural hearing loss, and a small interstitial Xp microdeletion including the GPR143, TBL1X, and SHROOM2 genes. In addition, we re-examined a patient previously described with OA1, infertility and a similar Xp deletion with audiologic follow-up showing a late-onset sensorineural hearing loss. Our results raise an intriguing question about the possibility for TBL1X (absence) involvement in this type of hearing loss. However, our study cannot claim a causative relationship and more convincing evidence is needed before the hypothesis can be accepted that TBL1X could be involved in late-onset sensorineural hearing loss and that ocular albinism with late-onset sensorineural hearing loss can present itself as a contiguous gene deletion/microdeletion syndrome. The finding of infertility in all affected male patients demonstrates that this deletion, including the SHROOM2 gene, may be a potentially causative X-linked genetic factor of male infertility.


Assuntos
Albinismo Ocular/patologia , Proteínas do Olho/genética , Perda Auditiva Neurossensorial/patologia , Infertilidade/patologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação , Transducina/genética , Adulto , Idoso , Albinismo Ocular/complicações , Albinismo Ocular/genética , Feminino , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/genética , Humanos , Infertilidade/complicações , Infertilidade/genética , Masculino , Pessoa de Meia-Idade , Linhagem
20.
J Pharmacol Sci ; 132(1): 109-112, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27622543

RESUMO

Through its conversion to dopamine by aromatic l-amino acid decarboxylase (AADC), l-3,4-dihydroxyphenylalanine (l-DOPA) replenishes depleted brain dopamine in Parkinson's disease patients. We recently identified GPR143 as a candidate receptor for l-DOPA. In this study, we investigated the behavioral actions of l-DOPA in wild type (wt) and Gpr143-deficient mice. l-DOPA dose-dependently (10-100 mg/kg, i.p.) induced ptosis under treatment with 3-hydroxybenzylhydrazine, a centrally acting AADC inhibitor. This effect was not mimicked by 3-O-methyldopa. l-DOPA-induced ptosis in Gpr143-deficient mice to a similar extent as in wt mice. These results suggest that l-DOPA induces ptosis in a GPR143-independent fashion in mice.


Assuntos
Blefaroptose/induzido quimicamente , Levodopa , Animais , Comportamento Animal/efeitos dos fármacos , Blefaroptose/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA