Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 171: 106805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38141777

RESUMO

Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.


Assuntos
Retinopatia Diabética , MicroRNAs , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Retina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972436

RESUMO

Metabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation. Using an unbiased RNA sequencing approach, we defined the impact of EA on IEC gene expression to define molecular mechanisms by which IEC respond to EA. This approach identified a unique gene signature enriched in cyclic AMP response element-binding protein (CREB)-regulated gene targets. Utilizing loss- and gain-of-function approaches in cultured epithelia and murine colonoids, we demonstrate that EA elicits prominent CREB phosphorylation through cyclic AMP-independent mechanisms that requires elements of the mitogen-activated protein kinase signaling pathway. Further analysis revealed that EA signals through the G protein-coupled receptor GPR31 to promote induction of FosB, NR4A1, and DUSP1. These studies were extended to an in vivo murine model in conjunction with colonization of a pH reporter Escherichia coli strain that demonstrated significant mucosal acidification in the TNFΔARE model of murine ileitis. Herein, we observed a strong correlation between the expression of acidosis-associated genes with bacterial reporter sfGFP intensity in the distal ileum. Finally, the expression of this unique EA-associated gene signature was increased during active inflammation in patients with Crohn's disease but not in the patient control samples. These findings establish a mechanism for EA-induced signals during inflammation-associated acidosis in both murine and human ileitis.


Assuntos
Acidose/genética , Antiporters/genética , Doença de Crohn/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ileíte/genética , Receptores Acoplados a Proteínas G/genética , Transportadores de Sulfato/genética , Acidose/metabolismo , Acidose/patologia , Animais , Antiporters/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Regulação da Expressão Gênica , Humanos , Ileíte/metabolismo , Ileíte/patologia , Íleo/metabolismo , Íleo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Organoides/metabolismo , Organoides/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Transportadores de Sulfato/metabolismo
3.
FASEB J ; 34(11): 14850-14862, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918516

RESUMO

12-Lipoxygenase (12-LOX) is a key enzyme in arachidonic acid metabolism, and alongside its major product, 12-HETE, plays a key role in promoting inflammatory signaling during diabetes pathogenesis. Although 12-LOX is a proposed therapeutic target to protect pancreatic islets in the setting of diabetes, little is known about the consequences of blocking its enzymatic activity during embryonic development. Here, we have leveraged the strengths of the zebrafish-genetic manipulation and pharmacologic inhibition-to interrogate the role of 12-LOX in pancreatic development. Lipidomics analysis during zebrafish development demonstrated that 12-LOX-generated metabolites of arachidonic acid increase sharply during organogenesis stages, and that this increase is blocked by morpholino-directed depletion of 12-LOX. Furthermore, we found that either depletion or inhibition of 12-LOX impairs both exocrine pancreas growth and unexpectedly, the generation of insulin-producing ß cells. We demonstrate that morpholino-mediated knockdown of GPR31, a purported G-protein-coupled receptor for 12-HETE, largely phenocopies both the depletion and the inhibition of 12-LOX. Moreover, we show that loss of GPR31 impairs pancreatic bud fusion and pancreatic duct morphogenesis. Together, these data provide new insight into the requirement of 12-LOX in pancreatic organogenesis and islet formation, and additionally provide evidence that its effects are mediated via a signaling axis that includes the 12-HETE receptor GPR31.


Assuntos
Lipoxigenases/metabolismo , Organogênese , Pâncreas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Ácido Araquidônico/metabolismo , Lipoxigenases/genética , Pâncreas/embriologia , Receptores Acoplados a Proteínas G/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Mol Cell Oncol ; 4(6): e1359228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209647

RESUMO

Effective anti-rat sarcoma viral oncogene (RAS) therapies have remained the holy grail of cancer treatment. Mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) sustains tumorigenesis when linked to the plasma membrane (PM). The G protein-coupled receptor 31 (GPR31) is now identified to mediate KRAS membrane association and is crucial for proliferation, survival and macropinocytosis of KRAS-dependent cancer cells, suggesting that GPR31 is a druggable target for anti-RAS therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA