RESUMO
Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation. PTH treatment induced Gprc5a expression in MC3T3-E1 cells, rat osteosarcoma ROS17/2.8 cells, and mouse femurs. Induction of Gprc5a expression by PTH occurred in the absence of protein synthesis and was mediated primarily via the cAMP pathway, suggesting that Gprc5a is a direct target of PTH signaling. Interestingly, Gprc5a expression was induced additively by co-treatment with PTH and 1α, 25-dihydroxyvitamin D3 (calcitriol), or retinoic acid in MC3T3-E1 cells. Reporter analysis of a 1 kb fragment of human GPRC5A promoter revealed that the promoter fragment showed responsiveness to PTH via the cAMP response element, suggesting that GPRC5A is also a PTH-inducible gene in humans. Gprc5a knockdown promoted cell viability and proliferation, as demonstrated by MTT and BrdU assays. Gprc5a knockdown also promoted osteoblast differentiation, as indicated by gene expression analysis and mineralization assay. Mechanistic studies showed that Gprc5a interacted with BMPR1A and suppressed BMP signaling induced by BMP-2 and constitutively active BMP receptors, ALK2 (ACVR1) Q207D and ALK3 (BMPR1A) Q233D. Thus, our results suggest that Gprc5a is a novel gene induced by PTH that acts in an inhibitory manner on both cell proliferation and osteoblast differentiation and is a candidate for drug targets for osteoporosis.
Assuntos
Diferenciação Celular , Proliferação de Células , Osteoblastos , Hormônio Paratireóideo , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Hormônio Paratireóideo/farmacologia , Camundongos , Ratos , Humanos , Transdução de Sinais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Regiões Promotoras Genéticas/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , AMP Cíclico/metabolismo , Tretinoína/farmacologia , Calcitriol/farmacologiaRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a significant public health problem characterized by persistent airflow limitation. Despite previous research into the pathogenesis of COPD, a comprehensive understanding of the cell-type-specific mechanisms in COPD remains lacking. Recent studies have implicated Rab GTPases in regulating chronic immune response and inflammation via multiple pathways. In this study, the molecular regulating mechanism of RAB32 in COPD was investigated by multiple bioinformatics mining and experimental verification. METHODS: We collected lung tissue surgical specimens from Zhongshan Hospital, Fudan University, and RT-qPCR and western blotting were used to detect the expression of Rabs in COPD lung tissues. Four COPD microarray datasets from the Gene Expression Omnibus (GEO) were analyzed. COPD-related epithelial cell scRNA-seq data was obtained from the GSE173896 dataset. Weighted gene co-expression network analysis (WGCNA), mfuzz cluster, and Spearman correlation analysis were combined to obtain the regulatory network of RAB32 in COPD. The slingshot algorithm was used to identify the regulatory molecule, and the co-localization of RAB32 and GPRC5A was observed with immunofluorescence. RESULTS: WGCNA identified 771 key module genes significantly associated with the occurrence of COPD, including five Rab genes. RAB32 was up-regulated in lung tissues from subjects with COPD as contrast to those without COPD on both mRNA and protein levels. Integrating the results of WGCNA, Mfuzz clusters, and Spearman analysis, nine potential interacting genes with RAB32 were identified. Among these genes, GPRC5A exhibited a similar molecular expression pattern to RAB32. Co-expression density analysis at the cell level demonstrated that the co-expression density of RAB32 and GPRC5A was higher in type I alveolar epithelial cells (AT1s) than in type II alveolar epithelial cells (AT2s). The immunofluorescence also confirmed the co-localization of RAB32 and GPRC5A, and the Pearson correlation analysis found the relationship between RAB32 and GPRC5A was significantly stronger in the COPD lungs (r = 0.65) compared to the non-COPD lungs (r = 0.33). CONCLUSIONS: Our study marked endeavor to delineate the molecular regulatory axis of RAB32 in COPD by employing diverse methods and identifying GPRC5A as a potential interacting molecule with RAB32. These findings offered novel perspectives on the mechanism of COPD.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Algoritmos , Células Epiteliais Alveolares , Western Blotting , Biologia Computacional , Doença Pulmonar Obstrutiva Crônica/genética , Receptores Acoplados a Proteínas GRESUMO
GPRC5A is the first member of a new class of orphan receptors coupled to G proteins, which also includes GPRC5B, GPRC5C, and GPRC5D. Since its cloning and identification in the 1990s, substantial progress has been made in understanding the possible functions of this receptor. GPRC5A has been implicated in a variety of cellular events, such as cytoskeleton reorganization, cell proliferation, cell cycle regulation, migration, and survival. It appears to be a central player in different pathological processes, including tumorigenesis, inflammation, immune response, and tissue damage. The levels of GPRC5A expression differ depending on the type of cancer, with increased expression in colon, pancreas, and prostate cancers; decreased expression in lung cancer; and varied results in breast cancer. In this review, we discuss the early discovery of GPRC5A as a phorbol ester-induced gene and later as a retinoic acid-induced gene, its regulation, and its participation in important canonical pathways related to numerous types of tumors and inflammatory processes. GPRC5A represents a potential new target for cancer, inflammation, and immunity therapies.
Assuntos
Neoplasias Pulmonares , Receptores do Ácido Retinoico , Masculino , Humanos , Ésteres de Forbol , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Pulmonares/patologia , Inflamação , TretinoínaRESUMO
The G protein-coupled receptor, class C, group 5, member A (GPRC5A) plays a key role in various diseases, but its effect on hepatocellular carcinoma (HCC) and the potential underlying mechanisms remains unclear. In the present study, we explored the effect of GPRC5A on the progression of HCC and further explored its mechanism of action. The results revealed that the expression of GPRC5A was lower in HCC tissues and cells. Overexpression of GPRC5A suppressed the proliferation and epithelial-mesenchymal transition (EMT) of HCC cells. In addition, overexpression of GPRC5A induced oxidative stress and apoptosis. Further study showed that overexpression of GPRC5A inhibited the expression of STAT3/Socs3/c-MYC related-protein and the NLRP3 inflammasome. Moreover, the STAT3/Socs3/c-MYC and NLRP3 inflammasome was involved in the effect of GPRC5A on HCC cells. These results suggest that GPRC5A suppresses proliferation and EMT, induces oxidative stress and leads to apoptosis of HCC cells, potentially by regulating STAT3/Socs3/c-MYC signalling and the NLRP3 inflammasome. These findings suggest that GPRC5A has an anti-tumor effect in the formation of HCC, and the molecular therapy of GPRC5A provides a theoretical basis for treating HCC.
RESUMO
BACKGROUND: Pancreatic cancer has been a threateningly lethal malignant tumor worldwide. Despite the promising survival improvement in other cancer types attributing to the fast development of molecular precise medicine, the current treatment situation of pancreatic cancer is still woefully challenging since its limited response to neither traditional radiotherapy and chemotherapy nor emerging immunotherapy. The study is to explore potential responsible genes during the development of pancreatic cancer, thus identifying promising gene indicators and probable drug targets. METHODS: Different bioinformatic analysis were used to interpret the genetic events in pancreatic cancer development. Firstly, based on multiple cDNA microarray profiles from Gene Expression Omnibus (GEO) database, the genes with differently mRNA expression in cancer comparing to normal pancreatic tissues were identified, followed by being grouped based on the difference level. Then, GO and KEGG were performed to separately interpret the multiple groups of genes, and further Kaplan-Meier survival and Cox Regression analysis assisted us to scale down the candidate genes and select the potential key genes. Further, the basic physicochemical properties, the association with immune cells infiltration, mutation or other types variations besides expression gap in pancreatic cancer comparing to normal tissues of the selected key genes were analyzed. Moreover, the aberrant changed expression of key genes was validated by immunohistochemistry (IHC) experiment using local hospital tissue microarray samples and the clinical significance was explored based on TCGA clinical data. RESULTS: Firstly, a total of 22,491 genes were identified to express differently in cancer comparing to normal pancreatic tissues based on 5 cDNA expression profiles, and the difference of 487/22491 genes was over eightfold, and 55/487 genes were shared in multi profiles. Moreover, after genes interpretation which showed the > eightfold genes were mainly related to extracellular matrix structural constituent regulation, Kaplan-Meier survival and Cox-regression analysis were performed continually, and the result indicated that of the 55 extracellular locating genes, GPRC5A and IMUP were the only two independent prognostic indicators of pancreatic cancer. Further, detailed information of IMUP and GPRC5A were analyzed including their physicochemical properties, their expression and variation ratio and their association with immune cells infiltration in cancer, as well as the probable signaling pathways of genes regulation on pancreatic cancer development. Lastly, local IHC experiment performed on PAAD tissue array which was produced with 62 local hospital patients samples confirmed that GPRC5A and IMUP were abnormally up-regulated in pancreatic cancer, which directly associated with worse patients both overall (OS) and recurrence free survival (RFS). CONCLUSIONS: Using multiple bioinformatic analysis as well as local hospital samples validation, we revealed that GPRC5A and IMUP expression were abnormally up-regulated in pancreatic cancer which associated statistical significantly with patients survival, and the genes' biological features and clinical significance were also explored. However, more detailed experiments and clinical trials are obligatory to support their further potential drug-target role in clinical medical treatment.
RESUMO
Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 µg/kg in 200 µL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 µg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.
Assuntos
Lesão Pulmonar Aguda/terapia , Exossomos/transplante , Células-Tronco Mesenquimais/citologia , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Gás de Mostarda , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Sinalização YAP/metabolismoRESUMO
The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer.
Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Acoplados a Proteínas G/biossíntese , Animais , Neoplasias Ósseas/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Fosforilação , Neoplasias da Próstata/genética , Receptores Acoplados a Proteínas G/genéticaRESUMO
Homo sapiens orphan G protein-coupling receptor PEIG-1 was first cloned and characterized by applying differential display to T84 colonic carcinoma cells incubated in the presence of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (GenBank AF506289.1). Later, Lotan's laboratory found the same gene product in response to retinoic acid analogues, naming it with the symbol RAIG1. Now the official HGNC symbol is GPRC5A. Here, we report the extension of its original cDNA fragment towards the 5' and 3' end. In addition, we show that TPA (100 ng/ml, 162 nM) strongly stimulated GPRC5A mRNA in T84 colonic carcinoma cells, with maximal expression at 4 h and 100 ng/ml (162 nM). Western blots showed several bands between 35 and 50 kDa, responding to TPA stimulation. Confocal microscopy confirmed its TPA upregulation and the location in the plasma membrane. The PKC inhibitor Gö 6983 (10 µM), and the Ca2+ chelator BAPTA-AM (150 µM), strongly inhibited its TPA induced upregulation. The PKA inhibitor H-89 (10 µM), and the MEK1/2 inhibitor U0126 (10 µM), also produced a significant reduction in the TPA response (~50%). The SGK1 inhibitor GSK650394 stimulated GPRC5A basal levels at low doses and inhibit its TPA-induced expression at concentrations ≥10 µM. The IL-1ß autocrine loop and downstream signalling did not affect its expression. In conclusion, RAIG1/RAI3/GPRC5A corresponds to the originally reported PEIG-1/TIG1; the inhibition observed in the presence of Gö 6983, BAPTA and U0126, suggests that its TPA-induced upregulation is mediated through a PKC/Ca2+ âMEK1/2 signalling axis. PKA and SGK1 kinases are also involved in its TPA-induced upregulation.
Assuntos
Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Sequência de Aminoácidos , Butadienos/farmacologia , Linhagem Celular Tumoral , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Humanos , Indóis/farmacologia , Isoquinolinas/farmacologia , Maleimidas/farmacologia , Nitrilas/farmacologia , Conformação Proteica em alfa-Hélice , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Regulação para Cima/efeitos dos fármacosRESUMO
Introduction: GPRC5a plays an important role in many types of cancers with intriguing dual functions. GPRC5a acts as oncogene or tumor suppressor in different types of cancer. It is interesting to illustrate why GPRC5a functions differently.Methods: Data mining method were used to analyze the potential prognostic value of GPRC5a expression for Non-Small Cell Lung Cancer (NSCLC) lung cancer patients. Then we used cell models to further investigate the effect of p53 mutation on GPRC5a expression and the thereafter cell biological behaviors.Results: Our results present here showed High mRNA-level expression of GPRC5a was associated with worse overall survival about lung cancer patients; mutation of p53 gene could result in up regulation of GPRC5a expression and promotion of cell proliferation in lung cancer cells. Our results not only demonstrate the role of GPRC5a as a tumor suppressor in lung cancer, but also revealed the tumor suppressive factor p53 regulated tightly on GPRC5a and cell growth of NSCLC cancer.Conclusions: Our results demonstrated that p53 upregulated GPRC5a expression in NSCLC cells, and the loss of p53 expression in NSCLC may be one of the mechanisms leading to the decreased GPRC5a expression in NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Genes Supressores de Tumor/fisiologia , Neoplasias Pulmonares/genética , Receptores Acoplados a Proteínas G/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , RNA Mensageiro/genéticaRESUMO
BACKGROUND: Respirable crystalline silica causes lung carcinomas and many thousand future cancer cases are expected in e.g. Europe. Critical questions are how silica causes genotoxicity in the respiratory epithelium and if new cases can be avoided by lowered permissible exposure levels. In this study we investigate early DNA damaging effects of low doses of silica particles in respiratory epithelial cells in vitro and in vivo in an effort to understand low-dose carcinogenic effects of silica particles. RESULTS: We find DNA damage accumulation already after 5-10 min exposure to low doses (5 µg/cm2) of silica particles (Min-U-Sil 5) in vitro. DNA damage was documented as increased levels of γH2AX, pCHK2, by Comet assay, AIM2 induction, and by increased DNA repair (non-homologous end joining) signaling. The DNA damage response (DDR) was not related to increased ROS levels, but to a NLRP3-dependent mitochondrial depolarization. Particles in contact with the plasma membrane elicited a Ser198 phosphorylation of NLRP3, co-localization of NLRP3 to mitochondria and depolarization. FCCP, a mitochondrial uncoupler, as well as overexpressed NLRP3 mimicked the silica-induced depolarization and the DNA damage response. A single inhalation of 25 µg silica particles gave a similar rapid DDR in mouse lung. Biomarkers (CC10 and GPRC5A) indicated an involvement of respiratory epithelial cells. CONCLUSIONS: Our findings demonstrate a novel mode of action (MOA) for silica-induced DNA damage and mutagenic double strand breaks in airway epithelial cells. This MOA seems independent of particle uptake and of an involvement of macrophages. Our study might help defining models for estimating exposure levels without DNA damaging effects.
Assuntos
Dano ao DNA , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Material Particulado/toxicidade , Dióxido de Silício/toxicidade , Animais , Linhagem Celular , Ensaio Cometa , Células Epiteliais , Inflamassomos , Pulmão , Macrófagos , Camundongos , Mutagênicos , Receptores Acoplados a Proteínas G , Mucosa RespiratóriaRESUMO
The purpose of this study was to explore the functional implication of microRNA-218 (miR-218) in diabetic nephropathy (DN) through high-glucose-stimulated renal proximal tubule impairment. Biological function experiments showed that miR-218 and inflammatory factors TNF-α and IL-1ß were highly expressed in renal proximal tubule under high-glucose conditions. Inhibiting miR-218 alleviated renal tubular cell injury, which was represented by miR-218 inhibitor facilitating renal tubular cell vitality whilst reducing its apoptosis and levels of inflammation factors. In addition, we confirmed that miR-218 directly targeted GPRC5A and negatively regulated its expression. Co-transfection assay showed that overexpression of GPRC5A accentuated the mitigated action of miR-218 inhibitor on renal proximal tubule cell injury induced by high-glucose. Accordingly, these data indicated that downregulation of miR-218 can assuage high-glucose-resulted renal tubular cell damage, and its ameliorative effect was achieved by negative regulation of GPRC5A, which provides a novel direction for unearthing the pathogenesis and even further biological treatment of DN.
Assuntos
Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/genética , Glucose/efeitos adversos , Túbulos Renais/lesões , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Nefropatias Diabéticas/urina , Humanos , Interleucina-1beta/metabolismo , Túbulos Renais/citologia , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Fator de Necrose Tumoral alfa/metabolismoRESUMO
GPRC5A, a retinoic acid induced gene, is preferentially expressed in lung tissue. Gprc5a gene deletion leads to spontaneous lung tumor development. However, the mechanism of Gprc5a-mediated lung tumor suppression is not fully understood. Here we showed that MDM2, a p53-negative regulator, was dysregulated in Gprc5a-knockout (ko) mouse tracheal epithelial cells (KO-MTEC) compared to wild type ones. Targeting MDM2 in 1601-a Gprc5a-ko mouse derived lung tumor cell line-and A549-human lung cancer cells, by MDM2 inhibitor Nutlin-3a or small hairpin RNA (sh-RNA)-restored p53 signaling pathway, reduced cancer stem cell markers, and inhibited tumorigenicity. This suggests that dysregulated MDM2 pathway is essential for the oncogenic activities of these cells. MDM2 was found to be stabilized mainly by activated EGFR signaling as targeting EGFR by Erlotinib or sh-RNA repressed MDM2 in a transcription-independent manner. Importantly, overexpression of MDM2 and reduced GPRC5A expression at both protein and mRNA levels were frequently found in clinical human lung cancer tissues. Taken together, GPRC5A deficiency contributes to dysregulated MDM2 via activated EGFR signaling, which promotes lung tumor development.
Assuntos
Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Receptores Acoplados a Proteínas G/genética , Células A549 , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Pancreatic cancer (PaCa) is the fourth leading cause of cancer-related death, and personalized targeted cancer therapy is becoming a promising treatment strategy for PaCa. The central approach of targeted therapy is to find a targetable key and an effective targeting method. In this study, the importance of GPRC5a (the G-protein-coupled receptor family C, member 5, group A) was identified using data mining methods based on published datasets. After analysis of the basic expression of GPRC5a in normal pancreas tissue and various PaCa cell lines, gene editing of GPRC5a in the human PaCa cell line MIA PaCa-2 and the mouse PaCa cell line TB32047 was performed using CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9) to investigate the influence of GPRC5a on the proliferation and migration of PaCa cells as well as its effects on chemotherapy drug resistance. The results showed that GPRC5a was upregulated in PaCa tissues and various PaCa cell lines. Knockout of GPRC5a reduced the proliferation and migration ability of PaCa cell lines and suppressed the chemotherapy drug resistance of gemcitabine, oxaliplatin, and fluorouracil in PaCa cells. The phosphorylation of GSK-3ß (Glycogen synthase kinase-3ß) was found to be upregulated in the MIA PaCa-2 and TB32047 cells after GPRC5a knockout. In conclusion, GPRC5a was upregulated in PaCa leading to an enhanced drug resistance in PaCa cells. These results provide for the first time a theoretical basis for the development of an improved PaCa targeted therapy.
Assuntos
Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Mineração de Dados , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Fosforilação , Fosfosserina/metabolismoRESUMO
Despite the urgency for prevention and treatment of lung adenocarcinoma (LUAD), we still do not know drivers in pathogenesis of the disease. Earlier work revealed that mice with knockout of the G-protein coupled receptor Gprc5a develop late onset lung tumors including LUADs. Here, we sought to further probe the impact of Gprc5a expression on LUAD pathogenesis. We first surveyed GPRC5A expression in human tissues and found that GPRC5A was markedly elevated in human normal lung relative to other normal tissues and was consistently downregulated in LUADs. In sharp contrast to wild-type littermates, Gprc5a-/- mice treated chronically with the nicotine-specific carcinogen NNK developed LUADs by 6 months following NNK exposure. Immunofluorescence analysis revealed that the LUADs exhibited abundant expression of surfactant protein C and lacked the clara cell marker Ccsp, suggesting that these LUADs originated from alveolar type II cells. Next, we sought to survey genome-wide alterations in the pathogenesis of Gprc5a-/- LUADs. Using whole exome sequencing, we found that carcinogen-induced LUADs exhibited markedly higher somatic mutation burdens relative to spontaneous tumors. All LUADs were found to harbor somatic mutations in the Kras oncogene (p. G12D or p. Q61R). In contrast to spontaneous lesions, carcinogen-induced Gprc5a-/- LUADs exhibited mutations (variants and copy number gains) in additional drivers (Atm, Kmt2d, Nf1, Trp53, Met, Ezh2). Our study underscores genomic alterations that represent early events in the development of Kras mutant LUAD following Gprc5a loss and tobacco carcinogen exposure and that may constitute targets for prevention and early treatment of this disease.
Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Acoplados a Proteínas G/genética , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/enzimologia , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Carcinógenos/toxicidade , Linhagem da Célula , Genes Supressores de Tumor , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Knockout , Mutação , Nitrosaminas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/deficiênciaRESUMO
The clearance of oxidative stress compounds is critical for the protection of the organism from malignancy, but how this key physiological process is regulated is not fully understood. Here, we found that the expression of GPRC5A, a well-characterized tumor suppressor in lung cancer, was elevated in colorectal cancer tissues in patients. In both cancer cell lines and a colitis-associated cancer model in mice, we found that GPRC5A deficiency reduced cell proliferation and increased cell apoptosis as well as inhibited tumorigenesis in vivo. Through RNA-Seq transcriptome analysis, we identified oxidative stress associated pathways were dysregulated. Moreover, in GPRC5A deficient cells and mouse tissues, the oxidative agents were reduced partially due to increased glutathione (GSH) level. Mechanistically, GPRC5A regulates NF-κB mediated Vanin-1 expression which is the predominant enzyme for cysteamine generation. Administration of cystamine (the disulfide form of cysteamine) in GPRC5A deficient cell lines inhibited γ-GCS activity, leading to reduction of GSH level and increase of cell growth. Taken together, our studies suggest that GPRC5a is a potential biomarker for colon cancer and promotes tumorigenesis through stimulation of Vanin-1 expression and oxidative stress in colitis associated cancer. This study revealed an unexpected oncogenic role of GPRC5A in colorectal cancer suggesting there are complicated functional and molecular mechanism differences of this gene in distinct tissues.
Assuntos
Amidoidrolases/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Estresse Oxidativo , Receptores Acoplados a Proteínas G/genética , Animais , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Colite/complicações , Neoplasias Colorretais/complicações , Neoplasias Colorretais/metabolismo , Progressão da Doença , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica/métodos , Glutationa/metabolismo , Células HEK293 , Células HT29 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para CimaRESUMO
BACKGROUND: G protein-coupled receptor family C group 5 member A (GPRC5A), a retinoic acid-inducible gene, is a lung tumor suppressor. Previously, we showed that repression of GPRC5A expression was associated with pathologic differentiation grade of oral squamous cell carcinomas (OSCC) and overexpression of GPRC5A gene inhibited the malignant phenotype in OSCC cells, suggesting that GPRC5A also functions as a tumor suppressor in oral cancer. However, the molecular mechanisms underlying GPRC5A deficiency in head and neck squamous cell carcinoma (HNSCC) are still unclear. METHODS: In this study, we used Western blot analysis and immunohistochemical (IHC) staining to investigate the expression of GPRC5A in both HNSCC cell lines and clinical samples. GPRC5A stable transfectants and their parental HNSCC cells were characterized for their biological activities in anchorage-independent growth. RESULTS: IHC analysis showed that, GPRC5A expression was high in normal tissue, but gradually decreased in oral leukoplakia, a precancerous stage, and greatly suppressed in primary cancer. Repression of GPRC5A was correlated with activated STAT3, which associates with aggressive clinicopathological features in HNSCC patients. Moreover, overexpression of GPRC5A suppressed IL-6-induced-STAT3 activation and inhibited anchorage-independent growth in HNSCC cells. CONCLUSIONS: Repressed GPRC5A associates with increased tumor grade and activated STAT3, which may be used as a prognostic marker for tumor progression of HNSCC.
RESUMO
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of their targets in a sequence-dependent manner. For protein-coding transcripts, miRNAs regulate expression levels through binding sites in either the 3' untranslated region (3' UTR) or the amino acid coding sequence (CDS) of the targeted messenger RNA (mRNA). Currently, for the 5' untranslated region (5' UTR) of mRNAs, very few naturally occurring examples exist whereby the targeting miRNA down-regulates the expression of the corresponding mRNA in a seed-dependent manner. Here we describe and characterize two miR-103a-3p target sites in the 5' UTR of GPRC5A, a gene that acts as a tumor suppressor in some cancer contexts and as an ongocene in other cancer contexts. In particular, we show that the interaction of miR-103a-3p with each of these two 5' UTR targets reduces the expression levels of both GPRC5A mRNA and GPRC5A protein in one normal epithelial and two pancreatic cancer cell lines. By ectopically expressing "sponges" that contain instances of the wild-type 5' UTR targets we also show that we can reduce miR-103a-3p levels and increase GPRC5A mRNA and protein levels. These findings provide some first knowledge on the post-transcriptional regulation of this tumor suppressor/oncogene and present additional evidence for the participation of 5' UTRs in miRNA driven post-transcriptional regulatory control.
Assuntos
Regiões 5' não Traduzidas , MicroRNAs/metabolismo , Pâncreas/metabolismo , Receptores Acoplados a Proteínas G/genética , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismoRESUMO
G protein-coupled receptor, family C, group 5, member A (GPRC5A) had received attentions for its role in carcinogenesis and prognostic values in several types of cancer. However, the functional roles of GPRC5A in gastric cancer (GC) had never been elucidated. The expression levels of GPRC5A were detected by real-time quantitative reverse transcription PCR and Western blot in GC tissues and adjacent non-tumor tissues. GPRC5A expression in tissue sections of 106 GC samples was evaluated using immunohistochemistry. The staining results were compared with clinicopathological factors and to the prognosis of GC patients. The mRNA and protein expression levels of GPRC5A in gastric cancer tissues were higher than those in adjacent non-tumor tissues. Positive GPRC5A expression was significantly correlated with larger size of primary tumor, diffuse type (Lauren's classification), deeper serosal invasion, and more lymph node metastasis. In addition, Kaplan-Meier curve analysis demonstrated that GC patients with positive GPRC5A expression had poor prognosis than those with negative GPRC5A expression. GPRC5A expression was identified as an independent factor of the overall survival in GC patients by multivariate Cox analysis. Further, the overall survival difference existed between patients with GPRC5A positive and negative groups in GC patients with lymph node metastasis. Our results suggested that elevated levels of GPRC5A played significant roles in GC progression. GPRC5A could serve as a prognostic biomarker of GC.
Assuntos
Regulação Neoplásica da Expressão Gênica , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Resultado do TratamentoRESUMO
In a search for new breast cancer (BC) predisposing genes, we performed a whole exome sequencing analysis using six patient samples of familial BC and identified a germline inactivating mutation c.183delG [p. Arg61fs] in an orphan G protein-coupled receptor GPRC5A. An extended case-control study revealed a tenfold enrichment for this mutation in BC patients carrying the 5382insC allele of BRCA1, the major founder mutation in the Russian population, compared to wild-type BRCA1 BC cases [6/117 (5.1%) vs. 8/1578 (0.5%), p = 0.0002]. In mammary tumors (n = 60), the mRNA expression of GPRC5A significantly correlated with that of BRCA1 (p = 0.00018). In addition, the amount of GPRC5A transcript was significantly lower in BC obtained from BRCA1 mutation carriers (n = 17) compared to noncarriers (n = 93) (p = 0.026). Accordingly, a siRNA-mediated knockdown of either BRCA1 or GPRC5A in the MDA-MB-231 human BC cell line reduced expression of GPRC5A or BRCA1, respectively. Knockdown of GPRC5A also attenuated radiation-induced BRCA1- and RAD51-containing nuclear DNA repair foci. Taken together, these data suggest that GPRC5A is a modifier of BC risk in BRCA1 mutation carriers and reveals a functional interaction of these genes.