Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 25(3): 537-549, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32476608

RESUMO

OBJECTIVE: Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young and middle aged people. Food restriction (FR) has been shown to act neuroprotectively in animal models of stroke and TBI. Indeed, our previous studies showed that FR attenuates inflammation, through suppression of microglial activation and TNF-α production, suppresses caspase-3-induced neuronal cell death and enhances neuroplasticity in the rat model of TBI. Glucocorticoids (GCs) play a central role in mediating both molecular and behavioral responses to food restriction. However, the exact mechanisms of FR neuroprotection in TBI are still unclear. The goal of the present study was to examine whether FR exerts its beneficial effects by altering the glucocorticoid receptor (GR) signaling alone and/or together with other protective factors. METHODS: To this end, we examined the effects of FR (50% of regular daily food intake for 3 months prior to TBI) on the protein levels of total GR, GR phosphoisoform Ser232 (p-GR) and its transcriptional activity, as well as 11ß-HSD1, NFκB (p65) and HSP70 as factors related to the GR signaling. RESULTS: Our results demonstrate that FR applied prior to TBI significantly changes p-GR levels, and it's transcriptional activity during the recovery period after TBI. Moreover, as a pretreatment, FR modulates other protective factors in response to TBI, such as 11ß-HSD1, NF-κB (p65) and HSP70 that act in parallel with GR in it's anti-inflammatory and neuroprotective effects in the rat model of brain injury. CONCLUSION: Our results suggest that prophylactic FR represents a potent non-invasive approach capable of changing GR signalling, together with other factors related to the GR signaling in the model of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Modelos Animais de Doenças , Glucocorticoides , Humanos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 113(12): 3377-82, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26957608

RESUMO

Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.


Assuntos
Tecido Adiposo/fisiologia , Fator 3-gama Nuclear de Hepatócito/fisiologia , Receptores de Glucocorticoides/fisiologia , Tecido Adiposo/metabolismo , Animais , Glucocorticoides/efeitos adversos , Hiperlipidemias/genética , Camundongos , Regiões Promotoras Genéticas , Transcrição Gênica
3.
mBio ; 15(1): e0301123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117084

RESUMO

IMPORTANCE: Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.


Assuntos
Transformação Celular Neoplásica , Dexametasona , Herpesvirus Humano 8 , Receptores de Glucocorticoides , Sarcoma de Kaposi , Humanos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Herpesvirus Humano 8/fisiologia , Inflamação/virologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Sarcoma de Kaposi/tratamento farmacológico
4.
J Affect Disord ; 332: 125-135, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001697

RESUMO

BACKGROUND: Iron is a trace essential element to sustain the normal neurological function of human. Many researches had reported the involvement of iron deficiency (ID) in neural development and cognitive functions. However, the role of ID in pathogenesis of depression and its underlying mechanism are still unclear. METHODS: In this study, we first used chronic unpredicted mild stress (CUMS) and iron deprivation mouse models to clarify the pathogenesis role of cerebral ID in depression. Then the role of hippocampal glucocorticoid (GC)-glucocorticoid receptor (GR) pathway in cerebral ID induced depression were elucidated in iron deprivation mice and iron deficiency anemia patients. RESULTS: Our results revealed that both CUMS and iron deprivation could induce cerebral ID in mice, and combination of iron deprivation and CUMS could accelerate the onset and aggravate the symptoms of depression in mice. In hippocampus, ID led to neuronal injury and neurogenesis decrease, which might be related to downregulation of GC-GR signaling pathway caused GR dysfunction, thereby inhibiting the negative feedback regulation function of hippocampus on hypothalamic-pituitary-adrenal (HPA) axis. Moreover, the overactivity of HPA axis in iron deprivation mice and iron deficiency anemia patients also confirmed GR dysfunction. LIMITATIONS: Iron deprivation led to food and water intake decrease of mice, which may affect the behavioral test. In addition, we mainly evaluated the role of hippocampal ID in depression, and the number of iron deficiency anemia patients was limited. CONCLUSIONS: Our results identified that cerebral iron homeostasis was a key factor for maintaining mental stability.


Assuntos
Anemia Ferropriva , Depressão , Humanos , Camundongos , Animais , Depressão/psicologia , Glucocorticoides , Receptores de Glucocorticoides/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Regulação para Baixo , Anemia Ferropriva/metabolismo , Estresse Psicológico , Sistema Hipófise-Suprarrenal/metabolismo , Hipocampo/metabolismo , Transdução de Sinais , Ferro/metabolismo
5.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014281

RESUMO

Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.

6.
Ann Endocrinol (Paris) ; 79(3): 98-106, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29685454

RESUMO

Glucocorticoids (GC), such as cortisol or dexamethasone, control various physiological functions, notably those involved in development, metabolism, inflammatory processes and stress, and exert most of their effects upon binding to the glucocorticoid receptor (GR, encoded by NR3C1 gene). GC signaling follows several consecutive steps leading to target gene transactivation, including ligand binding, nuclear translocation of ligand-activated GR complexes, DNA binding, coactivator interaction and recruitment of functional transcriptional machinery. Any step may be impaired and may account for altered GC signaling. Partial or generalized glucocorticoid resistance syndrome may result in a reduced level of functional GR, a decreased hormone affinity and binding, a defect in nuclear GR translocation, a decrease or lack of DNA binding and/or post-transcriptional GR modifications. To date, 26 loss-of-function NR3C1 mutations have been reported in the context of hypertension, hirsutism, adrenal hyperplasia or metabolic disorders. These clinical signs are generally associated with biological features including hypercortisolism without negative regulatory feedback loop on the hypothalamic-pituitary-adrenal axis. Patients had often low plasma aldosterone and renin levels despite hypertension. Only one GR gain-of-function mutation has been described associating Cushing's syndrome phenotype with normal urinary-free cortisol. Some GR polymorphisms (ER22/23EK, GR-9ß) have been linked to glucocorticoid resistance and a healthier metabolic profile whereas some others seemed to be associated with GC hypersensitivity (N363S, BclI), increasing cardiovascular risk (diabetes type 2, visceral obesity). This review focuses on the earlier findings on the pathophysiology of GR signaling and presents criteria facilitating identification of novel NR3C1 mutations in selected patients.


Assuntos
Glucocorticoides/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Receptores de Glucocorticoides/deficiência , Síndrome de Cushing/genética , Predisposição Genética para Doença , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Mutação , Sistema Hipófise-Suprarrenal/fisiologia , Polimorfismo Genético , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA