RESUMO
The GRAS gene is an important specific transcription factor in plants, which has multiple functions such as signal transduction, cell morphogenesis and stress response. Although it is widely distributed in plants and has been characterized in several species, however, information about the GRAS family in Taraxacum kok-saghyz Rodin remains unknown. Here, TkGRAS family members were identified and analyzed for molecular characterization, tissue expression patterns and induced expression patterns. A total of 64 GRAS family members were identified at the genome-wide level, which could be categorized into 14 subfamilies by phylogenetic analysis. Most TkGRASs were intronless and had essentially the same gene structure in the same subfamily. Meanwhile, there were multiple response elements found in the promoters of TkGRASs. Tissue expression patterns and induced expression patterns showed that TkGRASs were expressed in different tissues and induced by abiotic stresses. Notably, the expression level of TkGRAS20 was up-regulated under different stresses, suggesting that this gene plays a pivotal role in the stress response. TkGRAS20 showed transcriptional activity in yeast cells and localized in the nucleus and plasma membrane. In conclusion, our study provided valuable insights into the genetic mechanisms underlying stress tolerance in TKS, and several key genes may be used for genetic breeding to improve stress tolerance.
Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Taraxacum , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes de Plantas , Regiões Promotoras Genéticas , Perfilação da Expressão GênicaRESUMO
BACKGROUND: GRAS genes formed one of the important transcription factor gene families in plants, had been identified in several plant species. The family genes were involved in plant growth, development, and stress resistance. However, the comparative analysis of GRAS genes in Rosaceae species was insufficient. RESULTS: In this study, a total of 333 GRAS genes were identified in six Rosaceae species, including 51 in strawberry (Fragaria vesca), 78 in apple (Malus domestica), 41 in black raspberry (Rubus occidentalis), 59 in European pear (Pyrus communis), 56 in Chinese rose (Rosa chinensis), and 48 in peach (Prunus persica). Motif analysis showed the VHIID domain, SAW motif, LR I region, and PFYRE motif were considerably conserved in the six Rosaceae species. All GRAS genes were divided into 10 subgroups according to phylogenetic analysis. A total of 15 species-specific duplicated clades and 3 lineage-specific duplicated clades were identified in six Rosaceae species. Chromosomal localization presented the uneven distribution of GRAS genes in six Rosaceae species. Duplication events contributed to the expression of the GRAS genes, and Ka/Ks analysis suggested the purification selection as a major force during the evolution process in six Rosaceae species. Cis-acting elements and GO analysis revealed that most of the GRAS genes were associated with various environmental stress in six Rosaceae species. Coexpression network analysis showed the mutual regulatory relationship between GRAS and bZIP genes, suggesting the ability of the GRAS gene to regulate abiotic stress in woodland strawberry. The expression pattern elucidated the transcriptional levels of FvGRAS genes in various tissues and the drought and salt stress in woodland strawberry, which were verified by RT-qPCR analysis. CONCLUSIONS: The evolution and functional analysis of GRAS genes provided insights into the further understanding of GRAS genes on the abiotic stress of Rosaceae species.
Assuntos
Fragaria , Malus , Pyrus , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Genoma de Planta , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Fragaria/genética , Fragaria/metabolismo , Malus/genética , Malus/metabolismoRESUMO
Alfalfa (Medicago sativa) is a high-quality legume forage crop worldwide, and alfalfa production is often threatened by abiotic environmental stresses. GRAS proteins are important transcription factors that play a vital role in plant development, as well as in response to environmental stress. In this study, the availability of alfalfa genome "Zhongmu No.1" allowed us to identify 51 GRAS family members, i.e., MsGRAS. MsGRAS proteins could be classified into nine subgroups with distinct conserved domains, and tandem and segmental duplications were observed as an expansion strategy of this gene family. In RNA-Seq analysis, 14 MsGRAS genes were not expressed in the leaf or root, 6 GRAS genes in 3 differentially expressed gene clusters were involved in the salinity stress response in the leaf. Moreover, qRT-PCR results confirmed that MsGRAS51 expression was induced under drought stress and hormone treatments (ABA, GA and IAA) but down-regulated in salinity stress. Collectively, our genome-wide characterization, evolutionary, and expression analysis suggested that the MsGRAS proteins might play crucial roles in response to abiotic stresses and hormonal cues in alfalfa. For the breeding of alfalfa, it provided important information on stress resistance and functional studies on MsGRAS and hormone signaling.
Assuntos
Genoma de Planta/genética , Medicago sativa/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Sequência de Aminoácidos , Secas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Salinidade , Alinhamento de Sequência , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. RESULTS: Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. CONCLUSION: This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
Assuntos
Manihot/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genéticaRESUMO
Our group has previously identified the activation of a GRAS transcription factor (TF) gene in the gain-of-function mutant population developed through activation tagging in rice (in an indica rice variety, BPT 5204) that was screened for water use efficiency. This family of GRAS transcription factors has been well known for their diverse roles in gibberellin signaling, light responses, root development, gametogenesis etc. Recent studies indicated their role in biotic and abiotic responses as well. Although this family of TFs received significant attention, not many genes were identified specifically for their roles in mediating stress tolerance in rice. Only OsGRAS23 (here named as OsGRAS22) was reported to code for a TF that induced drought tolerance in rice. In the present study, we have analyzed the expression patterns of rice GRAS TF genes under abiotic (NaCl and ABA treatments) and biotic (leaf samples infected with pathogens, Xanthomonas oryzae pv. oryzae that causes bacterial leaf blight and Rhizoctonia solani that causes sheath blight) stress conditions. In addition, their expression patterns were also analyzed in 13 different developmental stages. We studied their spatio-temporal regulation and correlated them with the in-silico studies. Fully annotated genomic sequences available in rice database have enabled us to study the protein properties, ligand interactions, domain analysis and presence of cis-regulatory elements through the bioinformatic approach. Most of the genes were induced immediately after the onset of stress particularly in the roots of ABA treated plants. OsGRAS39 was found to be a highly expressive gene under sheath blight infection and both abiotic stress treatments while OsGRAS8, OsSHR1 and OsSLR1 were also responsive. Our earlier activation tagging based functional characterization followed by the genome-wide characterization of the GRAS gene family members in the present study clearly show that they are highly appropriate candidate genes for manipulating stress tolerance in rice and other crop plants.
RESUMO
Plant-specific GRAS transcription factors regulate various biological processes in plant growth, development and stress responses. However, this important gene family was not fully characterized in pepper (Capsicum annuum L.), an economically important vegetable crop. Here, a total of 50 CaGRAS members were identified in pepper genome and renamed by their respective chromosomal distribution. Genomic organization revealed that most CaGRAS genes (84%) have no intron. Phylogenetic analysis divided pepper CaGRAS members into 10 subfamilies, with each having distinct conserved domains and functions. For the expansion of the GRAS genes in pepper, segmental duplication contributed more than tandem duplication did. Gene expression analysis in various tissues demonstrated that most of CaGRAS genes exhibited a tissue- and development stage-specific expression pattern, uncovering their potential functions in pepper growth and development. Moreover, 21 CaGRAS genes were differentially expressed under cold, drought, salt and gibberellin acid (GA) treatments, indicating that they may implicated in plant response to abiotic stress. Notably, GA responsive cis-elements were detected in the promoter regions of the majority of CaGRAS genes, suggesting that CaGRAS may involve in signal cross-talking. The first comprehensive analysis of GRAS gene family in pepper genome by this study provide insights into understanding the GRAS-mediated regulation network, benefiting the genetic improvements in pepper and some other relative plants.