RESUMO
Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.
Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Obesidade , Triptofano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Obesidade/metabolismo , Obesidade/enzimologia , Triptofano/metabolismo , Animais , Serotonina/metabolismo , Tecido Adiposo/metabolismo , Cinurenina/metabolismoRESUMO
The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.
RESUMO
Pathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Httex1) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants. Here, we show that transgenic plants accumulated Httex1 proteins with corresponding polyQ tracts, and mHttex1 induced protein aggregation and affected plant growth, especially root and root hair development, in a polyQ length-dependent manner. Quantitative proteomic analysis of young roots from severely affected Httex1Q63 and unaffected Httex1Q21 plants showed that the most reduced protein by polyQ63 is a GTP cyclohydrolase I (GTPCH) along with many of its related one-carbon (C1) metabolic pathway enzymes. GTPCH is a key enzyme involved in folate biosynthesis in plants and tetrahydrobiopterin (BH4) biosynthesis in mammals. Validating studies in 4-week-old R6/2 HD mice expressing a mHttex1 showed reduced levels of GTPCH and dihydrofolate reductase (DHFR, a key folate utilization/alternate BH4 biosynthesis enzyme), and impaired C1 and BH4 metabolism. Our findings from mHttex1 plants and mice reveal impaired expressions of GTPCH and DHFR and may contribute to a better understanding of mHtt-altered C1 and BH4 metabolism, and their roles in the pathogenesis of HD.
Assuntos
GTP Cicloidrolase , Doença de Huntington , Plantas Geneticamente Modificadas , Animais , Camundongos , Carbono , Ácido Fólico , GTP Cicloidrolase/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Agregados Proteicos , Proteômica , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).
Assuntos
Arsênio , Arsenitos , Caulobacteraceae , Roxarsona , Arsênio/metabolismo , Arsenitos/toxicidade , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacteraceae/metabolismo , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Ouro/metabolismo , Roxarsona/metabolismo , Roxarsona/farmacologiaRESUMO
This study tested the hypothesis that endothelium-specific GTP cyclohydrolase I (GTPCH I) overexpression (Tg-GCH) restores age-associated endothelial dysfunction in vivo. Aortic GTPCH I expression and serum nitric oxide (NO) release were measured in young and aged mice. Aortic rings from young and aged wild-type (WT) mice and aged Tg-GCH mice were suspended for isometric tension recording. A hind limb ischemia model was used to measure blood flow recovery. Aged mice showed reduced GTPCH I expression in the aorta and decreased NO levels in serum. Compared with aged WT mice, Tg-GCH significantly elevated NO levels in serum in aged Tg-GCH mice, restored the impaired aortic relaxation in response to acetylcholine, and significantly elevated aortic constriction in response to L-NAME. Importantly, aged Tg-GCH mice displayed a significant increase in blood flow recovery compared with aged WT mice. GTPCH I reduction contributes to aging-associated endothelial dysfunction, which can be retarded by Tg-GCH.
RESUMO
The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.
Assuntos
GTP Cicloidrolase/deficiência , Microcirculação , Microvasos/enzimologia , Fenilcetonúrias/enzimologia , Pele/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , GTP Cicloidrolase/genética , Masculino , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/fisiopatologia , Fenilcetonúrias/genética , Fenilcetonúrias/fisiopatologiaRESUMO
GTP cyclohydrolase I enzyme (GTPCH-I) is a rate limiting enzyme in the biosynthesis pathway of tetrahydrobiopterin (BH4) and tetrahydrofolate (THF) compounds; latter being are an essential compounds involved in many biological functions. This enzyme has been evaluated structurally and functionally in many organisms to understand its putative role in cell processes, kinetics, regulations, drug targeting in infectious diseases, pain sensitivity in humans, and so on. In Mycobacterium tuberculosis (a human pathogen causing tuberculosis), this GTPCH-I activity has been predicted to be present in Rv3609c gene (folE) of H37 Rv strain, which till date has not been studied in detail. In order to understand in depth, the structure and function of folE protein in M. tuberculosis H37 Rv, in silico study was designed by using many different bioinformatics tools. Comparative and structural analysis predicts that Rv3609c gene is similar to folE protein ortholog of Listeria monocytogenes (cause food born disease), and uses zinc ion as a cofactor for its catalysis. Result shows that mutation of folE protein at 52th residue from tyrosine to glycine or variation in pH and temperature can lead to high destability in protein structure. Studies here have also predicted about the functional regions and interacting partners involved with folE protein. This study has provided clues to carry out experimentally the analysis of folE protein in mycobacteria and if found suitable will be used for drug targeting.
Assuntos
Proteínas de Bactérias , Simulação por Computador , GTP Cicloidrolase , Mutação de Sentido Incorreto , Mycobacterium tuberculosis , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , GTP Cicloidrolase/química , GTP Cicloidrolase/genética , Concentração de Íons de Hidrogênio , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Domínios ProteicosRESUMO
Folates are indispensable co-factors for one-carbon metabolism in all organisms. In humans, suboptimal folate intake results in serious disorders. One promising strategy for improving human folate status is to enhance folate levels in food crops by metabolic engineering. In this study, we cloned two GmGCHI (GTP cyclohydrolase I) genes (Gm8gGCHI and Gm3gGCHI) and one GmADCS (aminodeoxychorismate synthase) gene from soybean, which are responsible for synthesizing the folate precursors pterin and p-aminobenzoate, respectively. We initially confirmed their functions in transgenic Arabidopsis plants and found that Gm8gGCHI increased pterin and folate production more than Gm3gGCHI did. We then co-expressed Gm8gGCHI and GmADCS driven by endosperm-specific promoters in maize and wheat, two major staple crops, to boost their folate metabolic flux. A 4.2-fold and 2.3-fold increase in folate levels were observed in transgenic maize and wheat grains, respectively. To optimize wheat folate enhancement, codon-optimized Gm8gGCHI and tomato LeADCS genes under the control of a wheat endosperm-specific glutenin promoter (1Dx5) were co-transformed. This yielded a 5.6-fold increase in folate in transgenic wheat grains (Gm8gGCHI+/LeADCS+). This two-gene co-expression strategy therefore has the potential to greatly enhance folate levels in maize and wheat, thus improving their nutritional value.
Assuntos
Ácido Fólico/metabolismo , GTP Cicloidrolase/genética , Glycine max/genética , Proteínas de Plantas/genética , Transaminases/genética , Triticum/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , GTP Cicloidrolase/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/metabolismo , Transaminases/metabolismo , Triticum/metabolismo , Zea mays/metabolismoRESUMO
Parkinson's disease (PD) is an aging-related movement disorder mainly caused by a deficiency of neurotransmitter dopamine (DA) in the striatum of the brain and is considered to be due to progressive degeneration of nigro-striatal DA neurons. Most PD is sporadic without family history (sPD), and there are only a few percent of cases of young-onset familial PD (fPD, PARKs) with the chromosomal locations and the genes identified. Tyrosine hydroxylase (TH), tetrahydrobiopterin (BH4)-dependent and iron-containing monooxygenase, catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), which is the initial and rate-limiting step in the biosynthesis of catecholamines (DA, noradrenaline, and adrenaline). PD affects specifically TH-containing catecholamine neurons. The most marked neurodegeneration in patients with DA deficiency is observed in the nigro-striatal DA neurons, which contain abundant TH. Accordingly, TH has been speculated to play some important roles in the pathophysiology in PD. However, this decrease in TH is thought to be secondary due to neurodegeneration of DA neurons caused by some as yet unidentified genetic and environmental factors, and thus, TH deficiency may not play a direct role in PD. This manuscript provides an overview of the role of human TH in the pathophysiology of PD, covering the following aspects: (1) structures of the gene and protein of human TH in relation to PD; (2) similarity and dissimilarity between the phenotypes of aging-related sPD and those of young-onset fPD or DOPA-responsive dystonia due to DA deficiency in the striatum with decreased TH activity caused by mutations in either the TH gene or GTP cyclohydrolase I (GCH1) gene; and (3) genetic variants of the TH gene (polymorphisms, rare variants, and mutations) in PD, as discovered recently by advanced genome analysis.
Assuntos
Doença de Parkinson/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Tirosina 3-Mono-Oxigenase/genéticaRESUMO
Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 µg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world.
Assuntos
Ácido Fólico/genética , Ácido Fólico/metabolismo , Engenharia Metabólica , Phaseolus/genética , Phaseolus/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biofortificação , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
OBJECTIVES: Coffee consumption is considered to exert an influence on mood, the immune system, cardiovascular disease, and cancer development, but the mechanisms of action of coffee and its compounds are only partly known and understood. METHODS: Immunomodulatory effects of filtered extracts of coffee and decaffeinated coffee as well as coffee compounds were investigated in human peripheral blood mononuclear cells (PBMCs) stimulated with mitogen phytohemagglutinin (PHA). The activation of PBMCs was monitored by the breakdown of tryptophan to kynurenine via enzyme indoleamine 2,3-dioxygenase (IDO) and the production of the immune activation marker neopterin by GTP-cyclohydrolase I (GCH1). Both of these biochemical pathways are induced during cellular immune activation in response to the Th1-type cytokine interferon-γ (IFN-γ). RESULTS: Filtered extracts of coffee and decaffeinated coffee both suppressed tryptophan breakdown and neopterin formation in mitogen-stimulated PBMCs efficiently and in a dose-dependent manner. Of 4 coffee compounds tested individually, only gallic acid and less strong also caffeic acid had a consistent suppressive influence but also affected cell viability, whereas pure caffeine and chlorogenic acid exerted no relevant effect in the PBMC assay. CONCLUSION: The parallel influence of extracts on tryptophan breakdown and neopterin production shows an anti-inflammatory and immunosuppressive property of coffee extracts and some of its compounds. When extrapolating the in vitro results to in vivo, IFN-γ-mediated breakdown of tryptophan could be counteracted by the consumption of coffee or decaffeinated coffee. This may increase tryptophan availability for the biosynthesis of the neurotransmitter 5-hydroxytryptamine (serotonin) and thereby improve mood and quality of life.
Assuntos
Coffea/química , Leucócitos Mononucleares/metabolismo , Mitógenos/farmacologia , Extratos Vegetais/farmacologia , Triptofano/metabolismo , Anti-Inflamatórios , Ácidos Cafeicos/farmacologia , Células Cultivadas , Ácido Clorogênico/farmacologia , Ácido Gálico/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Imunossupressores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Leucócitos Mononucleares/química , Leucócitos Mononucleares/efeitos dos fármacos , Neopterina/metabolismo , Fito-Hemaglutininas/farmacologia , Serotonina/biossínteseRESUMO
This study was designed to determine whether treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Wild-type and GTP cyclohydrolase I (GTPCH-I)-deficient hph1 mice were administered EPO (1000 U/kg/day, s.c., 3 days). Cerebral microvessels of hph1 mice demonstrated reduced tetrahydrobiopterin (BH4) bioavailability, increased production of superoxide anions and impaired endothelial NO signaling. Treatment of hph1 mice with EPO attenuated the levels of 7,8-dihydrobiopterin, the oxidized product of BH4, and significantly increased the ratio of BH4 to 7,8-dihydrobiopterin. Moreover, EPO decreased the levels of superoxide anions and increased NO bioavailability in cerebral microvessels of hph1 mice. Attenuated oxidation of BH4 and inhibition of endothelial NO synthase uncoupling were explained by the increased expression of antioxidant proteins, manganese superoxide dismutase, and catalase. The protective effects of EPO observed in cerebral microvessels of hph1 mice were also observed in GTPCH-I siRNA-treated human brain microvascular endothelial cells exposed to EPO (1 U/mL or 10 U/mL; 3 days). Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of BH4 and endothelial NO in the cerebral microvascular endothelium. We demonstrate that treatment with erythropoietin (EPO) could protect cerebral microvasculature against the pathological consequences of endothelial nitric oxide (NO) synthase uncoupling. Our results suggest that EPO might protect the neurovascular unit against oxidative stress by restoring bioavailability of tetrahydrobiopterin (BH4) and endothelial nitric oxide.
Assuntos
Biopterinas/análogos & derivados , Eritropoetina/metabolismo , Microvasos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Biopterinas/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/citologia , Mutação/genética , Mutação/imunologia , Óxido Nítrico/metabolismo , Complexo Repressor Polycomb 1/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin (BH4) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of BH4 into neuron would induce the neuronal toxicity in vitro. To elucidate a role of BH4 in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and BH4 at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and BH4 levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of BH4 was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of BH4 in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both BH4 and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of BH4 can deteriorate the disease progression in early phase of PD, and the inhibition of BH4 increase could be a strategy for PD treatment.
RESUMO
GTP cyclohydrolase I (GCH) catalyzes the first and rate limiting step reaction for the de novo synthesis of 5,6,7,8-tetrahydrobiopterin (BH4). The expression of GCH is dramatically elevated by immune activation, while the mechanism remains to be elucidated. In this study, we investigated the transcription mechanism of the GCH gene using lipopolysaccharide (LPS) to stimulate mouse macrophage RAW264.7 cells. With luciferase assay, we found a highly conserved enhancer region spanning approximately 300 bp in intron 1 of GCH gene as a response element to LPS stimulation. The same enhancer region was also responsible for the induction of the GCH gene by IFN-γ and TNF-α in HUVECs. With electrophoresis mobility shift assay (EMSA) and site directed mutation analysis, we identified two key fragments containing C/EBP and Ets binding motifs within the enhancer. Furthermore, C/EBP-ß was involved in LPS activated GCH transcription through direct binding to the enhancer shown by supershift, chromatin immunoprecipitation, and RNA interference experiments. In conclusion, our findings uncovered a novel mechanism of GCH transcriptional regulation by immune activation.
Assuntos
Elementos Facilitadores Genéticos/imunologia , GTP Cicloidrolase/genética , Regulação Enzimológica da Expressão Gênica , Ativação Transcricional , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Macrófagos/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Zika virus (ZIKV), a positive-sense single-stranded RNA virus, causes congenital ZIKV syndrome in children and Guillain-Barré Syndrome (GBS) in adults. ZIKV expresses nonstructural protein 5 (NS5), a large protein that is essential for viral replication. ZIKV NS5 confers the ability to evade interferon (IFN) signalling; however, the exact mechanism remains unclear. In this study, we employed affinity pull-down and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and found that splicing factor 3b subunit 3 (SF3B3) is associated with the NS5-Flag pull-down complex through interaction with NS5. Functional assays showed that SF3B3 overexpression inhibited ZIKV replication by promoting IFN-stimulated gene (ISG) expression whereas silencing of SF3B3 inhibited expression of ISGs to promote ZIKV replication. GTP cyclohydrolase I (GCH1) is the first and rate-limiting enzyme in tetrahydrobiopterin (BH4) biosynthesis. NS5 upregulates the expression of GCH1 during ZIKV infection. And GCH1 marginally promoted ZIKV replication via the IFN pathway. Additionally, GCH1 expression is related to the regulation of SF3B3. Overexpression of the SF3B3 protein effectively reduced GCH1 protein levels, whereas SF3B3 knockdown increased its levels. These findings indicated that ZIKV NS5 binding protein SF3B3 contributed to the host immune response against ZIKV replication by modulating the expression of GCH1.
Assuntos
Infecção por Zika virus , Zika virus , Criança , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Cromatografia Líquida , Ligação Proteica , Fatores de Processamento de RNA/metabolismo , Espectrometria de Massas em Tandem , Proteínas não Estruturais Virais/genética , GTP Cicloidrolase/metabolismoRESUMO
Drug-resistant Plasmodium vivax malaria impedes efforts to control, eliminate, and ultimately eradicate malaria in Southeast Asia. P. vivax resistance to antifolate drugs derives from point mutations in specific parasite genes, including the dihydropteroate synthase (pvdhps), dihydrofolate reductase (pvdhfr), and GTP cyclohydrolase I (pvgch1) genes. This study aims to investigate the prevalence and spread of drug resistance markers in P. vivax populating the China-Myanmar border. Blood samples were collected from symptomatic patients with acute P. vivax infection. Samples with single-clone P. vivax infections were sequenced for pvdhps and pvdhfr genes and genotyped for 6 flanking microsatellite markers. Copy number variation in the pvgch1 gene was also examined. Polymorphisms were observed in six different codons of the pvdhps gene (382, 383, 512, 549, 553, and 571) and six different codons of the pvdhfr gene (13, 57, 58, 61, 99, 117) in two study sites. The quadruple mutant haplotypes 57I/L/58R/61M/117T of pvdhfr gene were the most common (comprising 76% of cases in Myitsone and 43.7% of case in Laiza). The double mutant haplotype 383G/553G of pvdhps gene was also prevalent at each site (40.8% and 31%). Microsatellites flanking the pvdhfr gene differentiated clinical samples from wild type and quadruple mutant genotypes (FST= 0.259-0.3036), as would be expected for a locus undergoing positive selection. The lack of copy number variation of pvgch1 suggests that SP-resistant P. vivax may harbor alternative mechanisms to secure sufficient folate.
Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Migrantes , Antimaláricos/farmacologia , China , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Humanos , Mutação , Mianmar , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
Tetrahydrobiopterin (BH4) is well-known as a cofactor of phenylalanine hydroxylase (PAH) and nitric oxide synthase (NOS), but its exact role in lipogenesis is unclear. In this study, the GTP cyclohydrolase I (GTPCH) gene was overexpressed to investigate the role of BH4 in lipogenesis in oleaginous fungus Mortierella alpina. Transcriptome data analysis reveal that GTPCH expression was upregulated when nitrogen was exhausted, resulting in lipid accumulation. Significant changes were also found in the fatty acid profile of M. alpina grown on medium that contained a GTPCH inhibitor relative to that of M. alpina grown on medium that lacked the inhibitor. GTPCH overexpression in M. alpina (the MA-GTPCH strain) led to a sevenfold increase in BH4 levels and enhanced cell fatty acid synthesis and poly-unsaturation. Increased levels of nicotinamide adenine dinucleotide phosphate (NADPH) and upregulated expression of NADPH-producing genes in response to enhanced BH4 levels were also observed, which indicate a novel aspect of the NADPH regulatory mechanism. Increased BH4 levels also enhanced phenylalanine hydroxylation and nitric oxide synthesis, and the addition of an NOS or a PAH inhibitor in the MA-GTPCH and control strain cultures decreased fatty acid accumulation, NADPH production, and the transcript levels of NADPH-producing genes. Our research suggests an important role of BH4 in lipogenesis and that the phenylalanine catabolism and arginine-nitric oxide pathways play an integrating role in translating the effects of BH4 on lipogenesis by regulating the cellular NADPH pool. Thus, our findings provide novel insights into the mechanisms of efficient lipid biosynthesis regulation in oleaginous microorganisms and lay a foundation for the genetic engineering of these organisms to optimize their dietary fat yield.
RESUMO
The complete folate biosynthesis pathway exists in the genome of a rickettsial endosymbiont of Ixodes pacificus, Rickettsia monacensis strain Humboldt (formerly known as Rickettsia species phylotype G021). Recently, our lab demonstrated that the folA gene of strain Humboldt, the final gene in the folate biosynthesis pathway, encodes a functional dihydrofolate reductase enzyme. In this study, we report R. monacensis strain Humboldt has a functional GTP cyclohydrolase I (GCH1), an enzyme required for the hydrolysis of GTP to form 7,8-dihydroneopterin triphosphate in the folate biosynthesis pathway. The GCH1 gene of R. monacensis, folE, share homology with the folE gene of R. monacensis strain IrR/Munich, with a nucleotide sequence identity of 99%. Amino acid alignment and comparative protein structure modeling have shown that the FolE protein of R. monacensis has a conserved core subunit of GCH1 from the T-fold structural superfamily. All amino acid residues, including conserved GTP binding sites and zinc binding sites, are preserved in the FolE protein of R. monacensis. A recombinant GST-FolE protein from R. monacensis was overexpressed in Escherichia coli, purified by affinity chromatography, and assayed for enzyme activity in vitro. The in vitro enzymatic assay described in this study accorded the recombinant GCH1 enzyme of R. monacensis with a specific activity of 0.81 U/mg. Our data suggest folate genes of R. monacensis strain Humboldt have the potential to produce biochemically active enzymes for de novo folate synthesis, addressing the physioecological underpinnings behind tick-Rickettsia symbioses.
Assuntos
Proteínas de Bactérias/metabolismo , GTP Cicloidrolase/metabolismo , Rickettsia/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , GTP Cicloidrolase/genética , Ixodes/microbiologia , Alinhamento de Sequência , SimbioseRESUMO
In part due to the existence of simple methods for its cultivation and genetic manipulation, Haloferax volcanii is a major archaeal model organism. It is the only archaeon for which the whole set of post-transcriptionally modified tRNAs has been sequenced, allowing for an in silico prediction of all RNA modification genes present in the organism. One approach to check these predictions experimentally is via the construction of targeted gene deletion mutants. Toward this goal, an integrative "Gateway vector" that allows gene deletion in H. volcanii uracil auxotrophs was constructed. The vector was used to delete three predicted tRNA modification genes: HVO_2001 (encoding an archaeal transglycosyl tranferase or arcTGT), which is involved in archeosine biosynthesis; HVO_2348 (encoding a newly discovered GTP cyclohydrolase I), which catalyzes the first step common to archaeosine and folate biosynthesis; and HVO_2736 (encoding a member of the COG1444 family), which is involved in N(4)-acetylcytidine (ac(4)C) formation. Preliminary phenotypic analysis of the deletion mutants was conducted, and confirmed all three predictions.
Assuntos
Deleção de Genes , Haloferax volcanii/enzimologia , Haloferax volcanii/genética , Processamento Pós-Transcricional do RNA , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , GTP Cicloidrolase/genética , Marcação de GenesRESUMO
BACKGROUND: GTP cyclohydrolase I (GTPCH) deficiency could impair the synthesis of tetrahydrobiopterin and causes metabolic diseases involving phenylalanine catabolism, neurotransmitter synthesis, nitric oxide production and so on. Though improvements could be achieved by tetrahydrobiopterin and neurotransmitter precursor levodopa supplementation, residual motor and mental deficits remain in some patients. An appropriate GTPCH deficiency animal model with clinical symptoms, especially the motor impairments, is still not available for mechanism and therapy studies yet. OBJECTIVES AND METHODS: To investigate whether the heterozygous GTPCH missense mutation p.Leu117Arg identified from a patient with severe infancy-onset dopa-responsive motor impairments is causative and establish a clinical relevant GTPCH deficiency mouse model, we generated a mouse mutant mimicking this missense mutation using the CRISPR/Cas9 technology. Series of characterization experiments on the heterozygous and homozygous mutants were conducted. RESULTS: The expressions of GTPCH were not significantly changed in the mutants, but the enzyme activities were impaired in the homozygous mutants. BH4 reduction and phenylalanine accumulation were observed both in the liver and brain of the homozygous mutants. Severer metabolic disturbance occurred in the brain than in the liver. Significant reduction of neurotransmitter dopamine, norepinephrine and serotonin was observed in the brains of homozygous mutants. Live-born homozygous mutants exhibited infancy-onset motor and vocalization deficits similar to the disease symptoms observed in the patient, while no obvious symptoms were observed in the young heterozygous mutant mice. With benserazide-levodopa treatment, survival of the homozygous mutants was improved but not completely rescued. CONCLUSIONS: The GTPCH p.Leu117Arg missense mutation is deleterious and could cause tetrahydrobiopterin, phenylalanine and neurotransmitter metabolic disturbances and infancy-onset motor dysfunctions recessively. This is the first GTPCH deficiency mouse model which could be live-born and exhibits significant motor impairments. The different extents of BH4 reduction and phenylalanine accumulation observed between liver and brain in response to GTPCH deficiency gives potential new insights into the vulnerability of brain to GTPCH deficiency.