Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595297

RESUMO

CRISPR/Cas9 system is widely used in a broad range of gene-editing applications. While this editing technique is quite accurate in the target region, there may be many unplanned off-target sites (OTSs). Consequently, a plethora of computational methods have been developed to predict off-target cleavage sites given a guide RNA and a reference genome. However, these methods are based on small-scale datasets (only tens to hundreds of OTSs) produced by experimental techniques to detect OTSs with a low signal-to-noise ratio. Recently, CHANGE-seq, a new in vitro experimental technique to detect OTSs, was used to produce a dataset of unprecedented scale and quality (>200 000 OTS over 110 guide RNAs). In addition, the same study included in cellula GUIDE-seq experiments for 58 of the guide RNAs. Here, we fill the gap in previous computational methods by utilizing these data to systematically evaluate data processing and formulation of the CRISPR OTSs prediction problem. Our evaluations show that data transformation as a pre-processing phase is critical prior to model training. Moreover, we demonstrate the improvement gained by adding potential inactive OTSs to the training datasets. Furthermore, our results point to the importance of adding the number of mismatches between guide RNAs and their OTSs as a feature. Finally, we present predictive off-target in cellula models based on both in vitro and in cellula data and compare them to state-of-the-art methods in predicting true OTSs. Our conclusions will be instrumental in any future development of an off-target predictor based on high-throughput datasets.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Projetos de Pesquisa
2.
Mol Ther ; 28(1): 19-28, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31672284

RESUMO

Defining the variables that impact the specificity of CRISPR/Cas9 has been a major research focus. Whereas sequence complementarity between guide RNA and target DNA substantially dictates cleavage efficiency, DNA accessibility of the targeted loci has also been hypothesized to be an important factor. In this study, functional data from two genome-wide assays, genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq) and circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), have been computationally analyzed in conjunction with DNA accessibility determined via DNase I-hypersensitive sequencing from the Encyclopedia of DNA Elements (ENCODE) Database and transcriptome from the Sequence Read Archive to determine whether cellular factors influence CRISPR-induced cleavage efficiency. CIRCLE-seq and GUIDE-seq datasets were selected to represent the absence and presence of cellular factors, respectively. Data analysis revealed that correlations between sequence similarity and CRISPR-induced cleavage frequency were altered by the presence of cellular factors that modulated the level of DNA accessibility. The above-mentioned correlation was abolished when cleavage sites were located in less accessible regions. Furthermore, CRISPR-mediated edits were permissive even at regions that were insufficient for most endogenous genes to be expressed. These results provide a strong basis to dissect the contribution of local chromatin modulation markers on CRISPR-induced cleavage efficiency.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , DNA/genética , Edição de Genes/métodos , Sequência de Bases/genética , Linhagem Celular Tumoral , Cromatina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Bases de Dados Genéticas , Desoxirribonuclease I/genética , Genoma Humano , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA-Seq , Transcrição Gênica , Transcriptoma
3.
BMC Genomics ; 18(1): 379, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506212

RESUMO

BACKGROUND: Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. RESULTS: Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction algorithm permitting the identification of genomic sequences with unexpected cleavage activity. CONCLUSION: The GUIDEseq package enables analysis of GUIDE-data from various nuclease platforms for any species with a defined genomic sequence. This software package has been used successfully to analyze several GUIDE-seq datasets. The software, source code and documentation are freely available at http://www.bioconductor.org/packages/release/bioc/html/GUIDEseq.html .


Assuntos
Sistemas CRISPR-Cas/genética , Bases de Dados Genéticas , Desoxirribonucleases/metabolismo , Análise de Sequência de DNA , Software , Estatística como Assunto , Anotação de Sequência Molecular
4.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618019

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 endonuclease (Cas9) derived from bacterial adaptive immune systems is a revolutionary tool used in both basic and applied science. It is a versatile system that enables the genome of different species to be modified by generating double strand breaks (DSBs) at specific locations. However, all of the CRISPR/Cas9 systems can also produce DSBs at off-target sites that differ substantially from on-target sites. The generation of DSBs in locations outside the intended site can produce mutations that need to be carefully monitored, especially when using these tools for therapeutic purposes. However, off-target analyses of the CRISPR/Cas9 system have been very challenging, particularly when performed directly in cells. In this manuscript, we review the different strategies developed to identify off-targets generated by CRISPR/cas9 systems and other specific nucleases (ZFNs, TALENs) in real target cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Marcação de Genes/métodos , Animais , Viés , Edição de Genes/normas , Marcação de Genes/normas , Humanos
5.
Cell Rep Methods ; 4(9): 100857, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39260365

RESUMO

We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFßR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFßR2 in immune cells can enhance resistance to the suppressive TGF-ß signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFßR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFßR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-ß signaling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Interleucina-15 , Células Matadoras Naturais , Receptor do Fator de Crescimento Transformador beta Tipo II , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Diferenciação Celular , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Edição de Genes/métodos
6.
Methods Mol Biol ; 2560: 279-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36481904

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Caspase9 (Cas9) system provides a programmable technology that may be used to edit the eukaryotic genome and epigenome. CRISPR/Cas9 includes a guide RNA targeted to a gene of interest which hybridizes to a nucleotide sequence next to a protospacer-adjacent motif (PAM) which guides the Cas9 endonucleases to the target site for cleavage via double-strand breaks. A caveat of the CRISPR/Cas9 system is the creation of off-target double-strand breaks (DSBs) which may result in anomalous insertions, deletions, and translocations. Thus, assays for the sensitive detection and analysis of off-target editing are critical. Here, we describe currently available CRISPR technologies, CRISPR applications, and current analysis platforms to detect off-target effects including genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-Seq), high-throughput genomic translocation sequencing (HTGTS), breaks labeling, enrichments on streptavidin and next-generation sequencing (BLESS), and in vitro nuclease-digested genome sequencing (Digenome-seq).


Assuntos
Genômica
7.
Methods Mol Biol ; 2429: 281-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507169

RESUMO

Targeted genome editing in hematopoietic stem and progenitor cells (HSPCs) using CRISPR/Cas9 can potentially provide a permanent cure for hematologic diseases. However, the utility of CRISPR/Cas9 systems for therapeutic genome editing can be compromised by their off-target effects. In this chapter, we outline the procedures for CRISPR/Cas9 off-target identification and validation in HSPCs. This method is broadly applicable to diverse CRISPR/Cas9 systems and cell types. Using this protocol, researchers can perform computational prediction and experimental identification of potential off-target sites followed by off-target activity quantification by next-generation sequencing.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
8.
Mol Ther Nucleic Acids ; 28: 613-622, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35614998

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-based genomic disruption of vascular endothelial growth factor A (Vegfa) with a single gRNA suppresses choroidal neovascularization (CNV) in preclinical studies, offering the prospect of long-term anti-angiogenesis therapy for neovascular age-related macular degeneration (AMD). Genome editing using CRISPR-CRISPR-associated endonucleases (Cas9) with multiple guide RNAs (gRNAs) can enhance gene-ablation efficacy by augmenting insertion-deletion (indel) mutations with gene truncations but may also increase the risk of off-target effects. In this study, we compare the effectiveness of adeno-associated virus (AAV)-mediated CRISPR-Cas9 systems using single versus paired gRNAs to target two different loci in the Vegfa gene that are conserved in human, rhesus macaque, and mouse. Paired gRNAs increased Vegfa gene-ablation rates in human cells in vitro but did not enhance VEGF suppression in mouse eyes in vivo. Genome editing using paired gRNAs also showed a similar degree of CNV suppression compared with single-gRNA systems. Unbiased genome-wide analysis using genome-wide unbiased identification of double-stranded breaks (DSBs) enabled by sequencing (GUIDE-seq) revealed weak off-target activity arising from the second gRNA. These findings suggest that in vivo CRISPR-Cas9 genome editing using two gRNAs may increase gene ablation but also the potential risk of off-target mutations, while the functional benefit of targeting an additional locus in the Vegfa gene as treatment for neovascular retinal conditions is unclear.

9.
Mol Ther Nucleic Acids ; 26: 1466-1478, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34938601

RESUMO

Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/ßN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.

10.
Prog Mol Biol Transl Sci ; 181: 31-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34127199

RESUMO

The clustered, regularly interspersed, short palindromic repeats (CRISPR) technology is revolutionizing biological studies and holds tremendous promise for treating human diseases. However, a significant limitation of this technology is that modifications can occur on off-target sites lacking perfect complementarity to the single guide RNA (sgRNA) or canonical protospacer-adjacent motif (PAM) sequence. Several in vivo and in vitro genome-wide off-target profiling approaches have been developed to inform on the fidelity of gene editing. Of these, GUIDE-seq has become one of the most widely adopted and reproducible methods. To allow users to easily analyze GUIDE-seq data generated on any sequencing platform, we developed an open-source pipeline, GS-Preprocess, that takes standard base-call output in bcl format and generate all required input data for off-target identification using bioconductor package GUIDEseq for off-target identification. Furthermore, we created a Docker image with GS-Proprocess, GUIDE-seq, and all its R and system dependencies already installed. The bundled pipeline will empower end users to streamline the analysis of GUIDE-seq data and motivate their use of higher throughput sequencing with increased multiplexing for GUIDE-seq experiments.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Edição de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
11.
Front Genome Ed ; 3: 673022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713260

RESUMO

As genome-editing nucleases move toward broader clinical applications, the need to define the limits of their specificity and efficiency increases. A variety of approaches for nuclease cleavage detection have been developed, allowing a full-genome survey of the targeting landscape and the detection of a variety of repair outcomes for nuclease-induced double-strand breaks. Each approach has advantages and disadvantages relating to the means of target-site capture, target enrichment mechanism, cellular environment, false discovery, and validation of bona fide off-target cleavage sites in cells. This review examines the strengths, limitations, and origins of the different classes of off-target cleavage detection systems including anchored primer enrichment (GUIDE-seq), in situ detection (BLISS), in vitro selection libraries (CIRCLE-seq), chromatin immunoprecipitation (ChIP) (DISCOVER-Seq), translocation sequencing (LAM PCR HTGTS), and in vitro genomic DNA digestion (Digenome-seq and SITE-Seq). Emphasis is placed on the specific modifications that give rise to the enhanced performance of contemporary techniques over their predecessors and the comparative performance of techniques for different applications. The clinical relevance of these techniques is discussed in the context of assessing the safety of novel CRISPR/Cas9 HIV-1 curative strategies. With the recent success of HIV-1 and SIV-1 viral suppression in humanized mice and non-human primates, respectively, using CRISPR/Cas9, rigorous exploration of potential off-target effects is of critical importance. Such analyses would benefit from the application of the techniques discussed in this review.

12.
Methods Mol Biol ; 2162: 197-213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926384

RESUMO

The CRISPR/Cas9 system has transformed how gene knockout and knock-in studies are performed in the lab, and it is poised to revolutionize medicine. However, one of the present limitations of this technology is its imperfect specificity. While CRISPR/Cas9 can be programmed to cut a specific DNA target sequence with relative precision, off-target sequence cleavage can occur in large genomes. Importantly, several techniques have recently been developed to measure CRISPR/Cas9 on- and off-target DNA cleavage in cells. Here, we present detailed protocols for evaluating the specificity of CRISPR/Cas9 and related systems in cells using both targeted-approaches, in which off-target sites are known a priori, and unbiased approaches which are able to identify off-target cleavage events throughout an entire genome. Together, these techniques can be used to assess the reliability of experimental models generated using CRISPR/Cas9 as well as the safety of therapeutics employing this technology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Clivagem do DNA , Genoma/genética , Humanos , RNA Guia de Cinetoplastídeos/genética
13.
Front Microbiol ; 11: 1872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903440

RESUMO

Human immunodeficiency virus type-1 (HIV-1) infection has resulted in the death of upward of 39 million people since being discovered in the early 1980s. A cure strategy for HIV-1 has eluded scientists, but gene editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) offer a new approach to developing a cure for HIV infection. While the CRISPR/Cas9 system has been used successfully in a number of different types of studies, there remains a concern for off-target effects. This review details the different aspects of the Cas9 system and how they play a role in off-target events. In addition, this review describes the current technologies available for detecting off-target cleavage events and their advantages and disadvantages. While some studies have utilized whole genome sequencing (WGS), this method sacrifices depth of coverage for interrogating the whole genome. A number of different approaches have now been developed to take advantage of next generation sequencing (NGS) without sacrificing depth of coverage. This review highlights four widely used methods for detecting off-target events: (1) genome-wide unbiased identification of double-stranded break events enabled by sequencing (GUIDE-Seq), (2) discovery of in situ Cas off-targets and verification by sequencing (DISCOVER-Seq), (3) circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-Seq), and (4) breaks labeling in situ and sequencing (BLISS). Each of these technologies has advantages and disadvantages, but all center around capturing double-stranded break (DSB) events catalyzed by the Cas9 endonuclease. Being able to define off-target events is crucial for a gene therapy cure strategy for HIV-1.

14.
Mol Ther Nucleic Acids ; 21: 965-982, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32818921

RESUMO

Viral latency of human immunodeficiency virus type 1 (HIV-1) has become a major hurdle to a cure in the highly effective antiretroviral therapy (ART) era. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has successfully been demonstrated to excise or inactivate integrated HIV-1 provirus from infected cells by targeting the long terminal repeat (LTR) region. However, the guide RNAs (gRNAs) have classically avoided transcription factor binding sites (TFBSs) that are readily observed and known to be important in human promoters. Although conventionally thought unfavorable due to potential impact on human promoters, our computational pipeline identified gRNA sequences that were predicted to inactivate HIV-1 transcription by targeting the nuclear factor κB (NF-κB) binding sites (gNFKB0, gNFKB1) with a high safety profile (lack of predicted or observed human edits) and broad-spectrum activity (predicted coverage of known viral sequences). Genome-wide, unbiased identification of double strand breaks (DSBs) enabled by sequencing (GUIDE-seq) showed that the gRNAs targeting NF-κB binding sites had no detectable CRISPR-induced off-target edits in HeLa cells. 5' LTR-driven HIV-1 transcription was significantly reduced in three HIV-1 reporter cell lines. These results demonstrate a working model to specifically target well-known TFBSs in the HIV-1 LTR that are readily observed in human promoters to reduce HIV-1 transcription with a high-level safety profile and broad-spectrum activity.

15.
Clin Lab Med ; 40(2): 205-219, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32439069

RESUMO

Therapeutic gene editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system offers significant improvements in specificity and programmability compared with previous methods. CRISPR editing strategies can be used ex vivo and in vivo with many theoretic disease applications. Off-target effects of CRISPR-mediated gene editing are an important outcome to be aware of, minimize, and detect. The current methods of regulatory approval for personalized therapies are complex and may be proved inefficient as these therapies are implemented more widely. The role of pathologists and laboratory medicine practitioners is vital to the clinical implementation of therapeutic gene editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Humanos , Imunoterapia Adotiva , Análise de Sequência de DNA , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Nucleases de Dedos de Zinco
16.
Biotechniques ; 65(5): 259-267, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114933

RESUMO

GUIDE-seq was developed to detect CRISPR/Cas9 off-target. However, as originally reported, it was associated with a high level of nonspecific amplification. In an attempt to improve it, we developed target-enriched GUIDE-seq (TEG-seq). The sensitivity level reached 0.1-10 reads-per-million  depending on the NGS platform used, which was equivalent to 0.0002-1% measured by Targeted Amplicon-seq. Application of TEG-seq was demonstrated for the evaluation of various Cas9/gRNA configurations, which suggests delivery of Cas9/gRNA ribonucleoprotein results in significantly fewer off-targets than Cas9/gRNA plasmid. TEG-seq was also applied to 22 gRNAs with relatively high in silico ranking score that targeted the biological relevant SNPs. The result indicated the initial selection of gRNAs with high score is important, although it cannot exclude the possibility of off-target.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Plasmídeos/genética , Ribonucleoproteínas/genética , Fluxo de Trabalho
17.
Mol Ther Nucleic Acids ; 12: 453-462, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195783

RESUMO

The method of delivery of CRISPR-Cas9 into target cells is a strong determinant of efficacy and specificity in genome editing. Even though high efficiency of Cas9 delivery is necessary for optimal editing, its long-term and high levels of expression correlate with increased off-target activity. We developed vesicles (VEsiCas) carrying CRISPR-SpCas9 ribonucleoprotein complexes (RNPs) that are efficiently delivered into target cells through the fusogenic glycoprotein of the vesicular stomatitis virus (VSV-G). A crucial step for VEsiCas production is the synthesis of the single guide RNA (sgRNA) mediated by the T7 RNA polymerase in the cytoplasm of producing cells as opposed to canonical U6-driven Pol III nuclear transcription. In VEsiCas, the absence of DNA encoding SpCas9 and sgRNA allows rapid clearance of the nuclease components in target cells, which correlates with reduced genome-wide off-target cleavages. Compared with SpCas9 RNPs electroporation, which is currently the method of choice to obtain transient SpCas9 activity, VEsiCas deliver the nuclease with higher efficiency and lower toxicity. We show that a wide variety of cells can be edited through VEsiCas, including a variety of transformed cells, induced pluripotent stem cells (iPSCs), and cardiomyocytes, in vivo. VEsiCas is a traceless CRISPR-Cas9 delivery tool for efficient and safe genome editing that represents a further advancement toward the therapeutic use of the CRISPR-Cas9 technology.

18.
Trends Plant Sci ; 21(10): 815-818, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27593568

RESUMO

Animal and plant cells have repair capabilities to combat DNA damage. DNA damage and repair dynamics can be determined by technologies such as IDLV capture, BLESS, HTGTS, digenome-seq, and GUIDE-seq. Here we highlight GUIDE-seq, a technology used in therapeutics, and envision its application in plants.


Assuntos
Quebras de DNA de Cadeia Dupla , Técnicas Genéticas , Plantas/genética , Quebras de DNA de Cadeia Simples , Dano ao DNA , Genoma de Planta/genética , Oligonucleotídeos/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA