Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(5): 3039-3046, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38057148

RESUMO

BACKGROUND: Postmortem muscle moisture loss leads to a decrease in carcass weight and can adversely impact overall meat quality. Therefore, it is critical to investigate water holding capacity (WHC) to enhance meat quality. Current research has primarily focused on examining the correlation between signaling molecules and meat quality in relation to the glycolysis effect on muscle WHC. But there exists a significant knowledge gap regarding the mechanism of WHC in Jersey cattle-yak meat. RESULTS: Jersey cattle-yak meat pH decreased and then increased during postmortem aging. Lactate content, cooking loss, pressing loss, drip loss and centrifuging loss of Jersey cattle-yak meat increased and then decreased during postmortem aging. The glycogen content of Jersey cattle-yak meat was significantly higher than that of yak meat at 6-120 h, being 8.40% higher than that of yak meat at 120 h. The activity of key glycolytic enzymes hexokinase (HK), pyruvate kinase (PK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) in Jersey cattle-yak meat was lower than that in yak meat. Correlation analysis showed that Jersey cattle-yak meat WHC was positively correlated with the activity of HK, PK, PFK and LDH. CONCLUSIONS: The WHC of Jersey cattle-yak meat was higher than that of Gannan yak meat, and it was significantly positively correlated with the activity of key enzymes of the glycolytic signaling pathway. Therefore, the glycolysis rate can be reduced by inhibiting enzyme activity to improve Jersey cattle-yak meat WHC and meat quality. © 2023 Society of Chemical Industry.


Assuntos
Culinária , Água , Animais , Bovinos , Água/análise , Carne/análise , Glicólise , Músculo Esquelético/química
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069312

RESUMO

The production performance of Jeryak, resulting from the F1 generation of the cross between Gannan yak and Jersey cattle, exhibits a significantly superior outcome compared with that of Gannan yak. Therefore, we used an RNA-seq approach to identify differentially expressed mRNAs (DEMs) and differentially expressed lncRNAs (DELs) influencing muscle growth and development in Gannan yaks and Jeryaks. A total of 304 differentially expressed lncRNAs and 1819 differentially expressed mRNAs were identified based on the screening criteria of |log 2 FC| > 1 and FDR < 0.05. Among these, 132 lncRNAs and 1081 mRNAs were found to be down-regulated, while 172 lncRNAs and 738 mRNAs were up-regulated. GO and KEGG analyses showed that the identified DELs and DEMs were enriched in the entries of pathways associated with muscle growth and development. On this basis, we constructed an lncRNA-mRNA interaction network. Interestingly, two candidate DELs (MSTRG.16260.9 and MSTRG.22127.1) had targeting relationships with 16 (MYC, IGFBP5, IGFBP2, MYH4, FGF6, etc.) genes related to muscle growth and development. These results could provide a basis for further studies on the roles of lncRNAs and mRNAs in muscle growth in Gannan yaks and Jeryak breeds.


Assuntos
RNA Longo não Codificante , Animais , Bovinos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculos/metabolismo , Crescimento e Desenvolvimento , Transcriptoma
3.
Foods ; 13(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39335882

RESUMO

This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.

4.
Animals (Basel) ; 14(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39123804

RESUMO

The Gannan yak, a superior livestock breed found on the Tibetan Plateau, exhibits significantly enhanced body size, weight, and growth performance in comparison to the Tianzhu white yak. MiRNAs play a pivotal role in regulating muscle growth by negatively modulating target genes. In this study, we found the average diameter, area, and length of myofibers in Gannan yaks were significantly higher than those of Tianzhu white yaks. Further, we focused on analyzing the longissimus dorsi muscle from both Gannan yaks and Tianzhu white yaks through transcriptome sequencing to identify differentially expressed (DE)miRNAs that influence skeletal muscle development. A total of 254 DE miRNAs were identified, of which 126 miRNAs were up-regulated and 128 miRNAs were down-regulated. GO and KEGG enrichment analysis showed that the target genes of these DE miRNAs were significantly enriched in signaling pathways associated with muscle growth and development. By constructing a DE miRNA- DE mRNA interaction network, we screened 18 key miRNAs, and notably, four of the candidates (novel-m0143-3p, novel-m0024-3p, novel-m0128-5p, and novel-m0026-3p) targeted six genes associated with muscle growth and development (DDIT4, ADAMTS1, CRY2, AKIRIN2, SIX1, and FOXO1). These findings may provide theoretical references for further studies on the role of miRNAs in muscle growth and development in Gannan yaks.

5.
Foods ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472894

RESUMO

Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.

6.
Foods ; 12(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38231770

RESUMO

Coiled-coil serine-rich protein 1 (CCSER 1) gene is a regulatory protein gene. This gene has been reported to be associated with various economic traits in large mammals in recent years. The aim of this study was to investigate the association between CCSER1 gene single nucleotide polymorphisms (SNPs) and Gannan yaks and to identify potential molecular marker loci for breeding milk quality in Gannan yaks. We genotyped 172 Gannan yaks using Illumina Yak cGPS 7K liquid microarrays and analyzed the correlation between the three SNPs loci of the CCSER1 gene and the milk qualities of Gannan yaks, including milk fat, protein and casein. It was found that mutations at the g.183,843A>G, g.222,717C>G and g.388,723G>T loci all affected the fat, protein, casein and lactose traits of Gannan yak milk to varying extents, and that the milk quality of individuals with mutant phenotypes was significantly improved. Among them, the milk fat content of AG heterozygous genotype population at g.183,843A>G locus was significantly higher than that of AA and GG genotype populations (p < 0.05); the casein and protein content of mutant GG and CG genotype populations at g.222,717C>G locus was significantly higher than that of wild-type CC genotype population (p < 0.05); and the g.388,723G>T locus of the casein and protein contents of the mutant TT genotype population were significantly higher (p < 0.05) than those of the wild-type GG genotype population. These results provide potential molecular marker sites for Gannan yak breeding.

7.
J Food Biochem ; 46(9): e14234, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608959

RESUMO

This research aimed to explore the effects of the nitric oxide synthase (NOS) inhibitor (L-NAME) on mitochondria apoptosis in postmortem Gannan yak (Bos grunniens) longissimus dorsi (LD) muscle and to explore its effect on meat quality further. The Gannan yak meat samples were treated with the control group (0.9% NaCl) and L-NAME (20, 60, and 100 mM) for 24 h and then stored for 0, 1, 3, 5, and 7 days at 4°C. NOS activity and NO content were investigated, and the parameters of mitochondrial apoptosis of the postmortem Gannan yak meat were determined. Meanwhile, the meat quality such as the centrifugation loss, meat color, and myofibril fragmentation index (MFI) was evaluated. The results indicated that after treatment with L-NAME, NOS activity and NO content decreased, causing mitochondrial membrane damage, Bax protein, and Cyt-c levels increased, and resulted in increased activities of caspase-9 and -3, promoting the occurrence of mitochondrial apoptosis. Furthermore, it increased the tenderness and water retention of Gannan yak meat. The results indicated that NOS inhibitor played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. PRACTICAL APPLICATIONS: The meat's tenderness is often considered the most important factor affecting consumers' willingness to repurchase. The relationship of caspases and MFI suggested that L-NAME played a regulatory role in postmortem Gannan yak meat quality by regulating mitochondria apoptosis during postmortem aging. This study provides valuable information for the development of the Gannan yak economy in Tibetan areas.


Assuntos
Carne , Mitocôndrias , Animais , Apoptose , Bovinos , Carne/análise , Mitocôndrias/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintase/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-24960561

RESUMO

Gannan yak is the native breed of Gansu province in China. In this work, the complete mitochondrial genome sequence of Gannan yak was determined for the first time. The total length of the mitogenome is 16,322 bp long, with the base composition of 33.74% A, 25.84% T, 13.18% C, and 27.24% G. It contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one non-coding region (D-loop region). The gene order of Gannan yak mitogenome is identical to that observed in most other vertebrates. The complete mitogenome sequence information of Gannan yak can provide useful data for further studies on protection of genetic resources and phylogenetic relationships within Bos grunniens.


Assuntos
Bovinos/genética , Genoma Mitocondrial/fisiologia , Filogenia , Animais , Sequência de Bases , China , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , RNA/genética , RNA Mitocondrial , RNA Ribossômico/genética , RNA de Transferência/genética
9.
Meat Sci ; 112: 3-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26496154

RESUMO

The objective of this study was to evaluate the effects of electrical stimulation (ES) versus non-electrical stimulation (NES) and type of boning (hot versus cold) on the eating quality of Gannan yak longissimus lumborum. Eighteen Gannan yak bulls were randomly divided into two groups: ES and NES. Hot boning (HB) and cold boning (CB) were applied to the left and right side of the carcasses, respectively. All of the four treatments missed the "ideal" pH/temperature window. HB reduced the rate of pH decline, decreased meat tenderness and water holding capacity. ES increased the rate of pH decline and improved yak meat tenderness (P<0.05); however, ES explained only 1% of the variation in WBSF. HB and ES had no significant effects on cooking loss, L* or b* values of yak meat. Postmortem aging increased yak meat tenderness and improved meat color parameters. HB had negative effects on yak meat quality, while ES could not reverse these deleterious effects.


Assuntos
Músculos do Dorso/química , Manipulação de Alimentos , Qualidade dos Alimentos , Indústria de Embalagem de Carne/métodos , Carne/análise , Animais , Animais Endogâmicos , Músculos do Dorso/ultraestrutura , Bovinos , Fenômenos Químicos , China , Culinária , Técnicas Eletroquímicas , Armazenamento de Alimentos , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Masculino , Fenômenos Mecânicos , Microscopia Eletrônica de Transmissão , Pigmentos Biológicos/análise , Refrigeração , Resistência ao Cisalhamento , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA