Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002000

RESUMO

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Assuntos
Replicação do DNA , Rad51 Recombinase , Cromossomos/metabolismo , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética , Transcrição Gênica
2.
RNA ; 30(8): 977-991, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688559

RESUMO

RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Mutação , Fenótipo , Ribonuclease P , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ribonuclease P/genética , Ribonuclease P/metabolismo , Protease La/genética , Protease La/metabolismo , Supressão Genética , Temperatura
3.
Genes Chromosomes Cancer ; 63(1): e23214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050922

RESUMO

Gene amplification is a crucial process in cancer development, leading to the overexpression of oncogenes. It manifests cytogenetically as extrachromosomal double minutes (dmin), homogeneously staining regions (hsr), or ring chromosomes (r). This study investigates the prevalence and distribution of these amplification markers in a survey of 80 131 neoplasms spanning hematologic disorders, and benign and malignant solid tumors. The study reveals distinct variations in the frequency of dmin, hsr, and r among different tumor types. Rings were the most common (3.4%) sign of amplification, followed by dmin (1.3%), and hsr (0.8%). Rings were particularly frequent in malignant mesenchymal tumors, especially liposarcomas (47.5%) and osteosarcomas (23.4%), dmin were prevalent in neuroblastoma (30.9%) and pancreatic carcinoma (21.9%), and hsr frequencies were highest in head and neck carcinoma (14.0%) and neuroblastoma (9.0%). Combining all three amplification markers (dmin/hsr/r), malignant solid tumors consistently exhibited higher frequencies than hematologic disorders and benign solid tumors. The structural characteristics of these amplification markers and their potential role in tumorigenesis and tumor progression highlight the complex interplay between cancer-initiating gene-level alterations, for example, fusion genes, and subsequent amplification dynamics. Further research integrating cytogenetic and molecular approaches is warranted to better understand the underlying mechanisms of these amplifications, in particular, the enigmatic question of why certain malignancies display certain types of amplification. Comparing the present results with molecular genetic data proved challenging because of the diversity in definitions of amplification across studies. This study underscores the need for standardized definitions in future work.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Sarcoma , Humanos , Amplificação de Genes , Sarcoma/genética , Aberrações Cromossômicas , Neuroblastoma/genética , Neoplasias Ósseas/genética , Análise Citogenética
4.
Am J Physiol Cell Physiol ; 327(2): C380-C386, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953842

RESUMO

Cell surface receptors play crucial roles in cellular responses to extracellular ligands, helping to modulate the functions of a cell based on information coming from outside the cell. Syndecan refers to a family of cell adhesion receptors that regulate both extracellular and cytosolic events. Alteration of syndecan expression disrupts regulatory mechanisms in a cell type-specific fashion, often leading to serious diseases, notably cancer. Given the multifaceted functions and distinct tissue distributions of syndecan, it will be important to unravel the gene-level intricacies of syndecan expression and thereby further understand its involvement in various carcinogenic processes. Although accumulating evidence indicates that the protein expression patterns of syndecan family members are significantly altered in cancer cells, the underlying gene-level mechanisms remain largely unknown. This review endeavors to explore syndecan gene expression levels across different cancer types by scrutinizing extensive cancer genome datasets using tools such as cBioPortal. Our analysis unveils that somatic mutations in SDC genes are rare occurrences, whereas copy number alterations are frequently observed across diverse cancers, particularly in SDC2 and SDC4. Notably, amplifications of SDC2 and SDC4 correlate with heightened metastatic potential and dismal prognosis. This underscores the recurrent nature of SDC2 and SDC4 amplifications during carcinogenesis and sheds light on their role in promoting cancer activity through augmented protein expression. The identification of these amplifications not only enriches our understanding of carcinogenic mechanisms but also hints at the potential therapeutic avenue of targeting SDC2 and SDC4 to curb cancer cell proliferation and metastasis.


Assuntos
Amplificação de Genes , Humanos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Animais , Sindecana-4/genética , Sindecana-4/metabolismo , Sindecanas/genética , Sindecanas/metabolismo , Carcinoma/genética , Carcinoma/patologia , Carcinoma/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
5.
Oncologist ; 29(8): e1051-e1060, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38709907

RESUMO

BACKGROUND: There are limited conventional chemotherapy options for biliary tract cancers (BTCs), a heterogenous group of lethal, rare malignancies. The receptor tyrosine kinase (RTK) is closely associated with the progression of human malignancies through the regulation of cell cycle. Overexpression or amplification of RTKs has been investigated as a potential biomarker and therapeutic target in BTC; herein, we investigate the value of such interventions. MATERIALS AND METHODS: Overexpression of RTK proteins was examined by immunohistochemistry in 193 BTC samples, of which 137 were gallbladder carcinoma, 29 were perihilar cholangiocarcinoma, and 27 were intrahepatic cholangiocarcinoma. Silver in situ hybridization of MET and HER2 was performed to assess gene amplification. RESULTS: In the entire cancer group, gallbladder, perihilar, and intrahepatic, MET amplification rates were 15.7%, 19.0%, 3.4%, and 14.8%, respectively, and of HER2 amplification rates were 22.4%, 27.2%, 17.2%, and 3.7%, respectively. MET and HER2 protein expressions were significantly correlated with their gene amplification status. RTKs were significantly associated with adverse clinicopathologic features such as advanced pT category and lymph node metastasis. Overall survival was significantly shorter in MET-amplified (P = .024) and EGFR-overexpressed cases (P = .045). Recurrence-free survival was significantly correlated with HER2-amplified (P = .038) and EGFR-overexpressed cases (P = .046) in all patient groups. Overall and recurrence-free survival were significantly shorter in patients who were double positive for HER2 and EGFR. CONCLUSION: Our data suggested that MET, HER2, and EGFR might be potential therapeutic targets and that their co-expression is a strong prognostic factor for BTCs.


Assuntos
Neoplasias do Sistema Biliar , Receptores ErbB , Amplificação de Genes , Proteínas Proto-Oncogênicas c-met , Receptor ErbB-2 , Humanos , Feminino , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias do Sistema Biliar/genética , Neoplasias do Sistema Biliar/patologia , Neoplasias do Sistema Biliar/metabolismo , Neoplasias do Sistema Biliar/tratamento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Idoso , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Idoso de 80 Anos ou mais
6.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524475

RESUMO

High-throughput genomic technologies are increasingly used in personalized cancer medicine. However, computational tools to maximize the use of scarce tissues combining distinct molecular layers are needed. Here we present a refined strategy, based on the R-package 'conumee', to better predict somatic copy number alterations (SCNA) from deoxyribonucleic acid (DNA) methylation arrays. Our approach, termed hereafter as 'conumee-KCN', improves SCNA prediction by incorporating tumor purity and dynamic thresholding. We trained our algorithm using paired DNA methylation and SNP Array 6.0 data from The Cancer Genome Atlas samples and confirmed its performance in cancer cell lines. Most importantly, the application of our approach in cancers of unknown primary identified amplified potentially actionable targets that were experimentally validated by Fluorescence in situ hybridization and immunostaining, reaching 100% specificity and 93.3% sensitivity.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Primárias Desconhecidas , DNA , Metilação de DNA , Humanos , Hibridização in Situ Fluorescente , Neoplasias Primárias Desconhecidas/genética
7.
Mol Biol Rep ; 51(1): 718, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824224

RESUMO

BACKGROUND: Breast cancer is one of the most common diseases in females, arising from overexpression of a variety of oncogenes like HER2/neu. The amplification rate of this gene is variable in different breast cancer patients. In this study, the amplification of the HER2/neu oncogene was distinguished in breast cancer patients and its correlation with prognostic factors. Also, the simultaneous effect of prognostic factors on the occurrence of a specific prognostic factor was investigated. MATERIALS AND METHODS: The multiplex PCR technique was used to assay the amplification of the HER2/neu oncogene in breast cancer patients. After extracting DNA from 100 tumor tissue and 8 normal breast tissue samples, the amplification of the HER2/neu gene was distinguished by the co-amplification of a single-copy reference gene, γ-IFN, and the target gene HER2/neu in the PCR reaction and using the Gel analyzer software. SPSS 23 and STATA 9.1 software were used for statistical analysis. RESULTS: The HER2/neu gene was amplification in 30% of the tumor samples. The statistical analysis showed a statistically significant relationship between HER2/neu gene amplification and progesterone receptors. Amplification of the HER2/neu gene significantly increases the chance of lymph node involvement. Also, the amplification of this gene in tumors with histological grade II tissue is more than grade I. CONCLUSION: The amplification of the HER2/neu gene can be used as an independent prognostic factor in predicting lymph node involvement and histological grade in breast cancer patients.


Assuntos
Neoplasias da Mama , Amplificação de Genes , Receptor ErbB-2 , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Prognóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Irã (Geográfico) , Pessoa de Meia-Idade , Adulto , Idoso
8.
Pathol Int ; 74(8): 454-463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874190

RESUMO

Eukaryotic elongation factor 1 alpha 2 (eEF1A2) encodes an isoform of the alpha subunit of the elongation factor 1 complex and is responsible for the enzymatic delivery of aminoacyl tRNA to the ribosome. Our proteomic analysis has identified eEF1A2 as one of the proteins expressed during malignant progression from adenocarcinoma in situ (AIS) to early invasive lung adenocarcinoma. The expression level of eEF1A2 in 175 lung adenocarcinomas was examined by immunohistochemical staining in relation to patient prognosis and clinicopathological factors. Quantitative PCR analysis and fluorescence in situ hybridization (FISH) were performed to evaluate the amplification of the eEF1A2 gene. Relatively high expression of eEF1A2 was observed in invasive adenocarcinoma (39/144 cases) relative to minimally invasive adenocarcinoma (1/10 cases) or AIS (0/21 cases). Among invasive adenocarcinomas, solid-type adenocarcinoma (15/32 cases, 47%) showed higher expression than other histological subtypes (23/92, 25%). Patients with eEF1A2-positive tumors had a significantly poorer prognosis than those with eEF1A2-negative tumors. Of the five tumors that were eEF1A2-positive, two cases showed amplified genomic eEF1A2 DNA, which was confirmed by both qPCR and FISH. These findings indicate that eEF1A2 overexpression occurs in the course of malignant transformation of lung adenocarcinomas and is partly due to eEF1A2 gene amplification.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Biomarcadores Tumorais , Neoplasias Pulmonares , Fator 1 de Elongação de Peptídeos , Humanos , Fator 1 de Elongação de Peptídeos/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Prognóstico , Masculino , Feminino , Adenocarcinoma/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Pessoa de Meia-Idade , Idoso , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Hibridização in Situ Fluorescente , Adulto , Idoso de 80 Anos ou mais , Imuno-Histoquímica
9.
Genes Dev ; 30(20): 2241-2252, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27898391

RESUMO

Replication forks encounter obstacles that must be repaired or bypassed to complete chromosome duplication before cell division. Proteomic analysis of replication forks suggests that the checkpoint and repair machinery travels with unperturbed forks, implying that they are poised to respond to stalling and collapse. However, impaired fork progression still generates aberrations, including repeat copy number instability and chromosome rearrangements. Deregulated origin firing also causes fork instability if a newer fork collides with an older one, generating double-strand breaks (DSBs) and partially rereplicated DNA. Current evidence suggests that multiple mechanisms are used to repair rereplication damage, yet these can have deleterious consequences for genome integrity.


Assuntos
Replicação do DNA , Eucariotos/genética , Instabilidade Genômica/genética , Origem de Replicação/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA
10.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473941

RESUMO

The PIK3CA and SOX2 genes map at 3q26, a chromosomal region frequently amplified in head and neck cancers, which is associated with poor prognosis. This study explores the clinical significance of PIK3CA and SOX2 gene amplification in early tumorigenesis. Gene copy number was analyzed by real-time PCR in 62 laryngeal precancerous lesions and correlated with histopathological grading and laryngeal cancer risk. Amplification of the SOX2 and PIK3CA genes was frequently detected in 19 (31%) and 32 (52%) laryngeal dysplasias, respectively, and co-amplification in 18 (29%) cases. The PIK3CA and SOX2 amplifications were predominant in high-grade dysplasias and significantly associated with laryngeal cancer risk beyond histological criteria. Multivariable Cox analysis further revealed PIK3CA gene amplification as an independent predictor of laryngeal cancer development. Interestingly, combined PIK3CA and SOX2 amplification allowed us to distinguish three cancer risk subgroups, and PIK3CA and SOX2 co-amplification was found the strongest predictor by ROC analysis. Our data demonstrate the clinical relevance of PIK3CA and SOX2 amplification in early laryngeal tumorigenesis. Remarkably, PIK3CA amplification was found to be an independent cancer predictor. Furthermore, combined PIK3CA and SOX2 amplification is emerging as a valuable and easy-to-implement tool for cancer risk assessment in patients with laryngeal precancerous lesions beyond current WHO histological grading.


Assuntos
Neoplasias Laríngeas , Lesões Pré-Cancerosas , Humanos , Amplificação de Genes , Neoplasias Laríngeas/genética , Lesões Pré-Cancerosas/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Carcinogênese/genética , Fatores de Transcrição SOXB1/genética
11.
Arkh Patol ; 86(3): 30-37, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38881003

RESUMO

OBJECTIVE: The purpose of this work was to evaluate c-MYC gene amplification in the substrate of prostate acinar adenocarcinoma at various Gleason scores and various stages of the disease, taking into account the morphological characteristics of the tumor. MATERIAL AND METHODS: The number of cases in the study was 82, including the control group - 12 cases. Morphological assessment included: determination of the total Gleason score, grading group, assessment of lymphovascular/perineural invasion, and architectural characteristics of the tumor. Gene amplification was assessed by FISH using the c-MYC (8q24)/SE8 probe. RESULTS: In all cases of the study group, amplification of the c-MYC gene was detected in the tumor, with a significant difference from the control group (p<0.05). When assessing cases with 4-6 fold copies of the gene, significant differences were established between patients with stages II and III of the disease and stage IV (10.0 and 13.5 versus 30.0) (p<0.05). Cluster amplification of the c-MYC gene was detected with equal frequency in groups of patients with stages III and IV of the disease, while in stage II of the disease, the event almost did not occur (p<0.05). A significant increase in the level of c-MYC gene amplification was found in groups with advanced stages of the disease (p<0.02). Non-cluster amplification significantly distinguishes T4M0 and T4M1 stage patients from the rest with a significant increase in the score (p<0.05). In the metastatic stage of the disease, there was an increase c-MYC gene amplification compared to the non-metastatic stage (p<0.02). The copy number of the c-MYC gene was significantly higher in cases with perineural and lymphovascular invasion, as well as in cases of cribriform tumor organization (p<0.05). CONCLUSION: Amplification of the c-MYC gene in prostate tumor cells is associated with advanced stages of the disease (T4M0 and T4M1) with an increase in the copy number of the gene during the metastatic stage of the process. It was found that increased amplification of the c-MYC gene distinguishes groups of patients whose tumors exhibit perineural and lymphovascular invasion, as well as a cribriform pattern of tumor organization.


Assuntos
Amplificação de Genes , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Pessoa de Meia-Idade , Idoso , Genes myc/genética , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/patologia
12.
Chromosoma ; 131(3): 107-125, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487993

RESUMO

Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.


Assuntos
Amplificação de Genes , Neoplasias , Aberrações Cromossômicas , DNA , Humanos , Neoplasias/genética , Oncogenes
13.
Trends Genet ; 36(7): 510-522, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32448494

RESUMO

Y chromosomes are typically viewed as genetic wastelands with few intact genes. Recent genomic analyses in Drosophila, however, show that gene gain is prominent on young Y chromosomes. Meiosis- and RNAi-related genes often coamplify on recently formed X and Y chromosomes, are testis-expressed, and produce antisense transcripts and short RNAs. RNAi pathways are also involved in suppressing sex ratio drive in Drosophila. These observations paint a dynamic picture of sex chromosome differentiation, suggesting that rapidly evolving genomic battles over segregation are rampant on young sex chromosomes and utilize RNAi to defend the genome against selfish elements that manipulate fair meiosis. Recurrent sex chromosome drive can have profound ecological, evolutionary, and cellular impacts and account for unique features of sex chromosomes.


Assuntos
Drosophila/genética , Evolução Molecular , Meiose , Seleção Genética , Cromossomo Y/genética , Animais , Feminino , Aptidão Genética , Genoma , Masculino , Razão de Masculinidade
14.
J Evol Biol ; 36(2): 381-398, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573922

RESUMO

Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.


Assuntos
Ácaros , Praguicidas , Animais , Austrália , Variações do Número de Cópias de DNA , Ácaros/genética , Organofosfatos , Dinâmica Populacional , Genoma
15.
Mol Biol Rep ; 50(9): 7693-7703, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37433908

RESUMO

Gene amplification is an increase in the copy number of restricted chromosomal segments that contain gene(s) and frequently results in the over-expression of the corresponding gene(s). Amplification may be found in the form of extrachromosomal circular DNAs (eccDNAs) or as linear repetitive amplicon regions that are integrated into chromosomes, which may form cytogenetically observable homogeneously staining regions or may be scattered throughout the genome. eccDNAs are structurally circular and in terms of their function and content, they can be classified into various subtypes. They play pivotal roles in many physiological and pathological phenomena such as tumor pathogenesis, aging, maintenance of telomere length and ribosomal DNAs (rDNAs), and gain of resistance against chemotherapeutic agents. Amplification of oncogenes is consistently seen in various types of cancers and can be associated with prognostic factors. eccDNAs are known to be originated from chromosomes as a consequence of various cellular events such as repair processes of damaged DNA or DNA replication errors. In this review, we highlighted the role of gene amplification in cancer, the functional aspects of eccDNAs subtypes, the proposed biogenesis mechanisms, and their role in gene or segmental-DNA amplification.


Assuntos
DNA Circular , Amplificação de Genes , DNA Circular/genética , DNA , Cromossomos , Oncogenes
16.
J Cutan Pathol ; 50(9): 845-851, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400233

RESUMO

BACKGROUND: TERT gene amplification (TGA) is a mechanism of telomerase reverse transcriptase (TERT) upregulation frequently utilized by acral melanomas (AMs). Currently, the utility of TERT immunohistochemistry (IHC) to predict TGA status in AMs is poorly documented. METHODS: AMs (26 primary and 3 metastatic) and non-acral cutaneous melanomas (6 primary) were subjected to immunohistochemical analysis using anti-TERT antibody to demonstrate protein expression and fluorescence in situ hybridization (FISH) to assess genomic copy number alteration. The relationship between TERT immunoreactivity and TGA confirmed by FISH was assessed using logistic regression. RESULTS: TERT expression was seen in 50% (13/26) of primary and 100% (3/3) of metastatic AMs and 50% (3/6) of primary non-acral cutaneous melanomas. TGA was found in 15% (4/26) and 67% (2/3) of primary and metastatic AMs and 17% (1/6) of non-acral cutaneous melanomas. The intensity of TERT immunoreactivity correlated with TGA (p = 0.04) and a higher TERT copy number-to-control ratio in AMs, with a correlation coefficient of 0.41 (p = 0.03). The sensitivity and specificity of TERT immunoreactivity for predicting TGA in AMs were 100% and 57%, with corresponding positive and negative predictive values of 38% and 100%, respectively. CONCLUSIONS: The clinical utility of TERT IHC to predict TGA status in AMs appears to be limited given its low specificity and positive predictive value.


Assuntos
Melanoma , Neoplasias Cutâneas , Telomerase , Humanos , Amplificação de Genes , Hibridização in Situ Fluorescente , Telomerase/genética , Telomerase/metabolismo , Mutação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma/diagnóstico , Melanoma/genética , Melanoma/metabolismo , Melanoma Maligno Cutâneo
17.
Mol Cell ; 60(3): 500-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26545079

RESUMO

Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively.


Assuntos
Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Amplificação de Genes , Sequências Repetidas Invertidas , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Quebras de DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/genética , Exodesoxirribonucleases/genética , Instabilidade Genômica/genética , Isocromossomos/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
J Math Biol ; 87(4): 59, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707631

RESUMO

Tumor recurrence, driven by the evolution of drug resistance is a major barrier to therapeutic success in cancer. Tumor drug resistance is often caused by genetic alterations such as point mutation, which refers to the modification of a single genomic base pair, or gene amplification, which refers to the duplication of a region of DNA that contains a gene. These mechanisms typically confer varying degrees of resistance, and they tend to occur at vastly different frequencies. Here we investigate the dependence of tumor recurrence dynamics on these mechanisms of resistance, using stochastic multi-type branching process models. We derive tumor extinction probabilities and deterministic estimates for the tumor recurrence time, defined as the time when an initially drug sensitive tumor surpasses its original size after developing resistance. For models of amplification-driven and mutation-driven resistance, we prove law of large numbers results regarding the convergence of the stochastic recurrence times to their mean. Additionally, we prove sufficient and necessary conditions for a tumor to escape extinction under the gene amplification model, discuss behavior under biologically relevant parameters, and compare the recurrence time and tumor composition in the mutation and amplification models both analytically and using simulations. In comparing these mechanisms, we find that the ratio between recurrence times driven by amplification versus mutation depends linearly on the number of amplification events required to acquire the same degree of resistance as a mutation event, and we find that the relative frequency of amplification and mutation events plays a key role in determining the mechanism under which recurrence is more rapid for any specific system. In the amplification-driven resistance model, we also observe that increasing drug concentration leads to a stronger initial reduction in tumor burden, but that the eventual recurrent tumor population is less heterogeneous, more aggressive and harbors higher levels of drug-resistance.


Assuntos
Agressão , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/genética , Mutação , Genômica , Probabilidade
19.
BMC Musculoskelet Disord ; 24(1): 950, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057715

RESUMO

INTRODUCTION: Parosteal osteosarcomas are low-grade bony malignancies that are treated primarily with surgical resection and reconstruction. This report discusses a unique case of a pediatric patient who presented with a parosteal osteosarcoma of the distal radius causing extensive erosive mass effect and growth disturbance of the adjacent ulna. Likely due to their slow-growing nonaggressive nature, parosteal osteosarcomas have not been previously described to abut adjacent bony structures through direct contact. The patient presented in a significantly delayed manner due to social circumstances, inadvertently revealing this novel behavior. This report reviews this rare case and describes the current understanding of this tumor. CASE PRESENTATION: The patient is a 13-year-old male who presented with a parosteal osteosarcoma of his distal radius. He presented with a palpable wrist mass and wrist stiffness. He presented in a delayed manner with advanced local disease due to social factors. Imaging revealed an osseous radial mass that abutted the ulna and likely stunted its growth. The patient ultimately underwent complex resection and allograft reconstruction of both his distal radius and ulna. Intraoperative pathology was confirmed to have negative tumor margins. Allograft reconstruction of the radius and ulna was performed utilizing patient-specific custom cutting guides. At the 6-month postoperative visit, the patient had no recurrence of the mass, minimal pain, and had almost regained range of motion of the extremities. Clinical radiographs at the 6-month postoperative visit demonstrated allograft incorporation. CONCLUSIONS: A previously unreported case of pediatric parosteal osteosarcoma of the distal radius with erosion of the adjacent ulna through direct contact is presented. The challenges in and the importance of arriving at a definitive diagnosis in a timely manner for the proper treatment of this malignancy are emphasized.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Humanos , Masculino , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/cirurgia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/cirurgia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/cirurgia , Rádio (Anatomia)/patologia , Ulna/diagnóstico por imagem , Ulna/cirurgia , Ulna/patologia , Extremidade Superior/patologia
20.
Proc Natl Acad Sci U S A ; 117(1): 610-618, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843890

RESUMO

APOBEC3 (A3) genes are members of the AID/APOBEC gene family that are found exclusively in mammals. A3 genes encode antiviral proteins that restrict the replication of retroviruses by inducing G-to-A mutations in their genomes and have undergone extensive amplification and diversification during mammalian evolution. Endogenous retroviruses (ERVs) are sequences derived from ancient retroviruses that are widespread mammalian genomes. In this study we characterize the A3 repertoire and use the ERV fossil record to explore the long-term history of coevolutionary interaction between A3s and retroviruses. We examine the genomes of 160 mammalian species and identify 1,420 AID/APOBEC-related genes, including representatives of previously uncharacterized lineages. We show that A3 genes have been amplified in mammals and that amplification is positively correlated with the extent of germline colonization by ERVs. Moreover, we demonstrate that the signatures of A3-mediated mutation can be detected in ERVs found throughout mammalian genomes and show that in mammalian species with expanded A3 repertoires, ERVs are significantly enriched for G-to-A mutations. Finally, we show that A3 amplification occurred concurrently with prominent ERV invasions in primates. Our findings establish that conflict with retroviruses is a major driving force for the rapid evolution of mammalian A3 genes.


Assuntos
Desaminases APOBEC/genética , Retrovirus Endógenos/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Mamíferos/genética , Desaminases APOBEC/metabolismo , Animais , Retrovirus Endógenos/imunologia , Fósseis/virologia , Interações Hospedeiro-Patógeno/imunologia , Mamíferos/imunologia , Mamíferos/virologia , Mutação , Filogenia , Edição de RNA/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA