Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biotechnol Bioeng ; 119(2): 327-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755343

RESUMO

Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.


Assuntos
Plantas Geneticamente Modificadas , Vacinas de Plantas Comestíveis , Administração Oral , Animais , Bactérias/genética , Humanos , Imunidade nas Mucosas , Camundongos , Microrganismos Geneticamente Modificados
2.
Ecotoxicol Environ Saf ; 208: 111676, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396008

RESUMO

The environmental risk assessment (ERA) for genetically modified plants (GMPs) is a prerequisite for commercial approval of these new varieties according to regulatory systems worldwide. The first country to regulate GM crops was the USA and the issue of possible environmental impacts was based on the principles used in risk assessment of pesticides. Two main pillars of this approach are the use of surrogate species for testing effects on non-target organisms using a tiered assessment with clear thresholds to indicate the need to move between tiers. The latest EFSA guidance document on ERA of Genetically Modified Organisms considers specifically the receiving environment in preparation of ERA for commercial cultivation of GMPs. According to existing guidelines in the EU, the receiving environment is defined by three mutually interacting components: the characteristics of the environmental stressor (i.e. the GM plant), the bio-geographical regions where the commercial release of the crop is expected and the agricultural systems therein. Difference in agronomic and ecological conditions (e.g. use of different varieties, vegetation of adjacent areas, non-target species assemblages, sensitivity of local species to the stressors) suggests that explicit considerations of the receiving environments are necessary. Results from field experiments indicate that differences in cultivation practices, e.g. the herbicide regime used on herbicide-tolerant GM crops, may induce direct and indirect effects on wild plant distribution and abundance, with consequent repercussions on food webs based on these plants. Moreover, ecological literature indicates that the concept of surrogate species has clear limitations if applied broadly to any ERA. Starting from case studies regarding GMPs, this paper discusses some ecological and agronomic characteristics of agro-ecosystems, which have implications in the elaboration of both hazard and exposure analyses during ERA. The species selection approach indicated in the EFSA Guidance Document and the consideration of the area(s) of the expected release of the new variety may provide the basis to an ecologically sound ERA for a range of environmental stressors. The quality of the data that become available for risk managers with this approach may support a more transparent and dependable ERA and risk management for GMPs as well as for other potential environmental stressors in agro-ecosystems.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Inocuidade dos Alimentos/métodos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Ecossistema , Monitoramento Ambiental/legislação & jurisprudência , Publicações Governamentais como Assunto , Guias como Assunto , Praguicidas/toxicidade , Medição de Risco/métodos
3.
Ecotoxicol Environ Saf ; 225: 112721, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478987

RESUMO

Previous studies reported adverse effects of genetically engineered maize that produces insecticidal Cry proteins from Bacillus thuringiensis (Bt) on the water flea Daphnia magna. In the current study, effects of flour, leaves, or pollen from stacked Bt maize that contains six Bt proteins (SmartStax) in two plant backgrounds on life table parameters of D. magna were investigated. Adverse effects were observed for Bt maize flour, originating from different production fields and years, but not for leaves or pollen, produced from plants grown concurrently in a glasshouse. Because leaves contained eight to ten times more Cry protein than flour, the effects of the flour were probably not caused by the Cry proteins, but by compositional differences between the plant backgrounds. Furthermore, considering the natural range of variation in the response of D. magna to conventional maize lines, the observed effects of Bt maize flour were unlikely to be of biological relevance. Our study demonstrates how Cry protein effects can be separated from plant background effects in non-target studies using Bt plant material as the test substance and how detected effects can be judged for their biological relevance.


Assuntos
Bacillus thuringiensis , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Daphnia/genética , Endotoxinas/genética , Endotoxinas/toxicidade , Farinha , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Plantas Geneticamente Modificadas , Zea mays/genética
4.
Anal Biochem ; 532: 60-63, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602750

RESUMO

Substantial concerns have been raised for the safety of transgenics on human health and environment. Many organizations, consumer groups, and environmental agencies advocate for stringent regulations to avoid transgene products' contamination in food cycle or in nature. Here we demonstrate a novel approach using surface enhanced Raman spectroscopy (SERS) to detect and quantify transgene from GM plants. We show a highly sensitive and accurate quantification of transgene DNA from multiple transgenic lines of Arabidopsis. The assay allows us to detect and quantify the transgenes as low as 0.10 pg without need for PCR-amplification. This technology is relatively cheap, quick, simple, and suitable for detection at low target concentration.


Assuntos
Aminoácido Oxirredutases/genética , Arabidopsis/genética , DNA de Plantas/análise , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Análise Espectral Raman/métodos , Transgenes/fisiologia , Agrobacterium tumefaciens/enzimologia , Arabidopsis/metabolismo , Bioensaio , Caulimovirus/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase
5.
Transgenic Res ; 26(4): 529-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28493168

RESUMO

Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.


Assuntos
Proteínas de Bactérias/biossíntese , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/metabolismo , Amido/metabolismo
6.
Arch Toxicol ; 91(4): 1977-2006, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27730258

RESUMO

The data of four 90-day feeding trials and a 1-year feeding trial with the genetically modified (GM) maize MON810 in Wistar Han RCC rats performed in the frame of EU-funded project GRACE were analysed. Firstly, the data obtained from the groups having been fed the non-GM maize diets were combined to establish a historical control data set for Wistar Han RCC rats at the animal housing facility (Slovak Medical University, Bratislava, Slovakia). The variability of all parameters is described, and the reference values and ranges have been derived. Secondly, the consistency of statistically significant differences found in the five studies was analysed. In order to do so, the body weight development, organ weight, haematology and clinical biochemistry data were compared between the studies. Based on the historical control data, equivalence ranges for these parameters were defined, and the values measured in the GM maize-fed groups were compared with these equivalence ranges. Thirdly, the (statistical) power of these feeding studies with whole food/feed was assessed and detectable toxicologically relevant group differences were derived. Linear mixed models (LMM) were applied, and standardized effect sizes (SES) were calculated in order to compare different parameters as well as to provide an overall picture of group and study differences at a glance. The comparison of the five feeding trials showed a clear study effect in the control data. It also showed inconsistency both in the frequency of statistically significant differences and in the difference values between control and test groups.


Assuntos
Alimentos Geneticamente Modificados/toxicidade , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Ração Animal , Animais , Peso Corporal , Feminino , Modelos Lineares , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Fatores de Tempo , Testes de Toxicidade/métodos
7.
Plant Biotechnol J ; 14(2): 615-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26038982

RESUMO

Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 µg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células/métodos , Hidroponia/métodos , Imunoglobulina G/biossíntese , Nicotiana/genética , Raízes de Plantas/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Glicosilação/efeitos dos fármacos , Humanos , Ácidos Indolacéticos/farmacologia , Nitratos/farmacologia , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/efeitos dos fármacos , Vitronectina/metabolismo
8.
J Sci Food Agric ; 96(8): 2613-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857894

RESUMO

Transgenic plants containing Bacillus thuringiensis (Bt) genes are being cultivated worldwide to express toxic insecticidal proteins. However, the commercial utilisation of Bt crops greatly highlights biosafety issues worldwide. Therefore, assessing the risks caused by genetically modified crops prior to their commercial cultivation is a critical issue to be addressed. In agricultural biotechnology, the goal of safety assessment is not just to identify the safety of a genetically modified (GM) plant, rather to demonstrate its impact on the ecosystem. Various experimental studies have been made worldwide during the last 20 years to investigate the risks and fears associated with non-target organisms (NTOs). The NTOs include beneficial insects, natural pest controllers, rhizobacteria, growth promoting microbes, pollinators, soil dwellers, aquatic and terrestrial vertebrates, mammals and humans. To highlight all the possible risks associated with different GM events, information has been gathered from a total of 76 articles, regarding non-target plant and soil inhabiting organisms, and summarised in the form of the current review article. No significant harmful impact has been reported in any case study related to approved GM events, although critical risk assessments are still needed before commercialisation of these crops. © 2016 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis/genética , Produtos Agrícolas/genética , Insetos/efeitos dos fármacos , Animais , Humanos , Plantas Geneticamente Modificadas/genética , Medição de Risco , Solo
9.
Artigo em Alemão | MEDLINE | ID: mdl-27240596

RESUMO

Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.


Assuntos
Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/prevenção & controle , Inocuidade dos Alimentos/métodos , Alimentos Geneticamente Modificados/efeitos adversos , Alimentos Geneticamente Modificados/normas , Engenharia Genética/normas , Europa (Continente) , Guias como Assunto , Humanos , Plantas Geneticamente Modificadas/efeitos adversos
10.
Plant Biotechnol J ; 13(9): 1221-3, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26032006

RESUMO

In recent years, different Bacillus thuringiensis (Bt) toxin-encoding genes have been combined or 'stacked' in genetically modified (GM) crops. Synergism between Bt proteins may occur and thereby increase the impact of the stacked GM event on nontarget invertebrates compared to plants expressing a single Bt gene. On the basis of bioassay data available for Bt toxins alone or in combination, we argue that the current knowledge of Bt protein interactions is of limited relevance in environmental risk assessment (ERA).


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Conservação dos Recursos Naturais , Endotoxinas/metabolismo , Meio Ambiente , Proteínas Hemolisinas/metabolismo , Invertebrados/metabolismo , Medição de Risco
11.
Plant Biotechnol J ; 12(9): 1271-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25431203

RESUMO

RNA interference (RNAi) is an emerging technology that offers new opportunities for the generation of new traits in genetically modified (GM) plants. Potential risks associated with RNAi-based GM plants and issues specific to their risk assessment were discussed during an international scientific workshop (June 2014) organized by the European Food Safety Authority (EFSA). Selected key outcomes of the workshop are reported here.


Assuntos
Plantas Geneticamente Modificadas/genética , Interferência de RNA , Inocuidade dos Alimentos , RNA de Cadeia Dupla/metabolismo , Medição de Risco
12.
Mol Ecol ; 23(19): 4846-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25145455

RESUMO

To investigate how exudation shapes root-associated bacterial populations, transgenic Arabidopsis thaliana plants that exuded the xenotopic compound octopine at low and high rates were grown in a nonsterile soil. Enumerations of both cultivable and octopine-degrading bacteria demonstrated that the ratios of octopine degraders increased along with octopine concentration. An artificial exudation system was also set up in which octopine was brought at four ratios. The density of octopine-degrading bacteria directly correlated with the input of octopine. Bacterial diversity was analysed by rrs amplicon pyrosequencing. Ensifer and Pseudomonas were significantly more frequently detected in soil amended with artificial exudates. However, the density of Pseudomonas increased as a response to carbon supplementation while that of Ensifer only correlated with octopine concentrations possibly in relation to two opposed colonization strategies of rhizosphere bacteria, that is, copiotrophy and oligotrophy.


Assuntos
Arabidopsis/química , Exsudatos de Plantas/química , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Animais , Arabidopsis/microbiologia , Arginina/análogos & derivados , Arginina/química , Bactérias/isolamento & purificação , Biodiversidade , Carbono/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Plantas Geneticamente Modificadas/química
13.
J Sci Food Agric ; 94(3): 381-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23965758

RESUMO

Member states in the European Union (EU) implemented both ex ante coexistence regulations and ex post liability schemes to ensure that genetically modified (GM) and non-GM crops can be cultivated side by side without excluding any agricultural option. Although proportionate coexistence is best achieved if regulated in a flexible manner, most implemented coexistence regulations merely rely on rigid measures. Flexible coexistence regulations, however, would reduce the regulatory burden on certain agricultural options and avoid jeopardizing economic incentives for coexistence. Flexibility can be integrated at: (i) the regulatory level by relaxing the rigidity of coexistence measures in ex ante regulations, yet without offsetting incentives to implement coexistence measures; (ii) the farm level by recommending the use of pollen barriers instead of large and fixed isolation distances; and (iii) the national/regional level by allowing diversified coexistence measures, which are adapted to the heterogeneity of farming in the EU. Owing to difficulties of implementation, the adoption of flexible and proportionate coexistence regulations will inevitably entail challenges.


Assuntos
Agricultura/legislação & jurisprudência , Produtos Agrícolas/genética , Abastecimento de Alimentos/legislação & jurisprudência , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas , União Europeia , Fluxo Gênico , Humanos , Pólen
14.
EFSA J ; 22(7): e8894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38993591

RESUMO

EFSA was asked by the European Parliament to provide a scientific opinion on the analysis by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) of Annex I of the European Commission proposal for a regulation 'on plants obtained by certain new genomic techniques (NGTs) and their food and feed, and amending regulation (EU) 2017/625'. The Panel on genetically modified organisms (GMO) assessed the opinion published by ANSES, which focuses on (i) the need to clarify the definitions and scope, (ii) the scientific basis for the equivalence criteria and (iii) the need to take potential risks from category 1 NGT plants into account. The EFSA GMO Panel considered the ANSES analysis and comments on various terms used in the criteria in Annex I of the European Commission proposal and discussed definitions based on previous EFSA GMO Panel opinions. The EFSA GMO Panel concluded that the available scientific literature shows that plants containing the types and numbers of genetic modifications used as criteria to identify category 1 NGT plants in the European Commission proposal do exist as the result of spontaneous mutations or random mutagenesis. Therefore, it is scientifically justified to consider category 1 NGT plants as equivalent to conventionally bred plants with respect to the similarity of genetic modifications and the similarity of potential risks. The EFSA GMO Panel did not identify any additional hazards and risks associated with the use of NGTs compared to conventional breeding techniques in its previous Opinions.

15.
Biotechnol Adv ; 72: 108337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460740

RESUMO

The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Plantas , Solo/química , Poluentes do Solo/análise
16.
Food Saf (Tokyo) ; 11(1): 1-20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970308

RESUMO

"Transgrafting" is a grafting procedure whereby a transgenic plant body is grafted to a non-transgenic plant body. It is a novel plant breeding technology that allows non-transgenic plants to obtain benefits usually conferred to transgenic plants. Many plants regulate flowering by perceiving the day-length cycle via expression of FLOWERING LOCUS T (FT) in the leaves. The resulting FT protein is translocated to the shoot apical meristem via the phloem. In potato plants, FT is involved in the promotion of tuber formation. Here we investigated the effects of a genetically modified (GM) scion on the edible parts of the non-GM rootstock by using potato plants transformed with StSP6A, a novel potato homolog of the FT gene. Scions prepared from GM or control (wild-type) potato plants were grafted to non-GM potato rootstocks; these were designated as TN and NN plants, respectively. After tuber harvest, we observed no significant differences in potato yield between TN and NN plants. Transcriptomic analysis revealed that only one gene-with unknown function-was differentially expressed between TN and NN plants. Subsequent proteomic analysis indicated that several members of protease inhibitor families, known as anti-nutritional factors in potato, were slightly more abundant in TN plants. Metabolomic analysis revealed a slight increase in metabolite abundance in NN plants, but we observed no difference in the accumulation of steroid glycoalkaloids, toxic metabolites found in potato. Finally, we found that TN and NN plants did not differ in nutrient composition. Taken together, these results indicate that FT expression in scions had a limited effect on the metabolism of non-transgenic potato tubers.

17.
Heliyon ; 8(11): e11583, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36406682

RESUMO

It has been a challenge to support the expansion of urban agriculture (UA) in cities due to its poor economic profitability. However, it is also hard to deny the increasing benefits of UA in improving the socio-environmental dimension of cities. Hence, in this review, different aspects of UA were examined to highlight its value beyond profitability such as social, health and well-being, disaster risk reduction, and environmental perspectives. A case study and relevant policies were analyzed to determine how policy makers can bridge the gap between current and future UA practices and sustainable development. Bridging these policy gaps can help the UA sector to sustainably grow and become successfully integrated in cities. Moreover, advancements in UA technologies and plant biotechnology were presented as potential solutions in increasing the future profitability of commercial UA. Consequently, as new UA-related technologies evolve, the multidisciplinary nature of UA and its changing identity from agriculture to digital technology, similarly require adaptive policies. These policies should maximize the potential of UA in contributing to resiliency and sustainability and incentivize the organic integration of UA in cities, while equally serving social justice.

18.
Plant Methods ; 18(1): 132, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494670

RESUMO

BACKGROUND: Copy number determination is one of the first steps in the characterization of transgenic plant lines. The classical approach to this, Southern blotting, is time-consuming, expensive and requires massive amounts of high-quality genomic DNA. Other PCR-based techniques are either inaccurate, laborious, or expensive. RESULTS: Here, we propose a new technique, IMPLANT (Insertion of competitive PCR calibrator for copy number estimation), a competitive PCR-based technique in which the competitor (based on an endogenous gene) is also incorporated in the T-DNA, which then gets integrated in the genome together with the gene of interest. As the number of integrated competitor molecules directly corresponds to the number of transgene copies, the transgene copy number can be determined by a single PCR reaction. We demonstrate that the results of this technique closely correspond with those obtained by segregation analysis in Arabidopsis and digital PCR In rice, indicating that it is a powerful alternative for other techniques for copy number determination. CONCLUSIONS: We show that this technique is not only reliable, but is also faster, easier, and cheaper as compared with other techniques. Accurate results are obtained in both Arabidopsis and rice, but this technique can be easily extended to other organisms and as such can be widely adopted in the field of biotechnology.

19.
Front Plant Sci ; 13: 939997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903231

RESUMO

CRISPR/Cas9-based ribonucleoprotein (RNP)-mediated system has the property of minimizing the effects related to the unwanted introduction of vector DNA and random integration of recombinant DNA. Here, we describe a platform based on the direct delivery of Cas9 RNPs to soybean protoplasts for genetic screens in knockout gene-edited soybean lines without the transfection of DNA vectors. The platform is based on the isolation of soybean protoplasts and delivery of Cas RNP complex. To empirically test our platform, we have chosen a model gene from the soybean genetic toolbox. We have used five different guide RNA (gRNA) sequences that targeted the constitutive pathogen response 5 (CPR5) gene associated with the growth of trichomes in soybean. In addition, efficient protoplast transformation, concentration, and ratio of Cas9 and gRNAs were optimized for soybean for the first time. Targeted mutagenesis insertion and deletion frequency and sequences were analyzed using both Sanger and targeted deep sequencing strategies. We were able to identify different mutation patterns within insertions and deletions (InDels) between + 5 nt and -30 bp and mutation frequency ranging from 4.2 to 18.1% in the GmCPR5 locus. Our results showed that DNA-free delivery of Cas9 complexes to protoplasts is a useful approach to perform early-stage genetic screens and anticipated analysis of Cas9 activity in soybeans.

20.
Pest Manag Sci ; 77(6): 2659-2666, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33470515

RESUMO

Bee pollinators are an important guild delivering a fundamental input to European agriculture due to the ecological service they provide to crops in addition to the direct economic revenues from apiculture. Bee populations are declining in Europe as a result of the effects of several environmental stressors, both natural and of anthropic origin. Efforts are ongoing in the European Union (EU) to improve monitoring and management of pollinator populations to arrest further declines. Genetically modified (GM) crops are currently cultivated in a limited area in Europe, and an environmental risk assessment (ERA) is required prior to their authorization for cultivation. The possible impacts of GM crops on pollinators are deemed relevant for the ERA. Existing ecotoxicological studies indicate that traits currently expressed in insect-resistant GM plants are unlikely to represent a risk for pollinators. However, new mechanisms of insect resistance are being introduced into GM plants, including novel combinations of Cry toxins and double strand RNA (dsRNA), and an ERA is required to consider lethal and sublethal effects of these new products on nontarget species, including insect pollinators. The evaluation of indirect effects linked to the changes in management practices (e.g. for herbicide-tolerant GM crops) is an important component of EU regulations and a requirement for ERA. This paper reviews current approaches used to test the sensitivity of pollinators to GM plants and their products to determine whether sufficient data are being provided on novel GM plants to satisfy EU risk assessment requirements. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Contenção de Riscos Biológicos , Ecossistema , Animais , Abelhas , Europa (Continente) , União Europeia , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA