Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101409

RESUMO

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Assuntos
Regulação da Expressão Gênica , Super Intensificadores , Transcrição Gênica , alfa-Globinas , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , alfa-Globinas/genética
2.
Physiol Rev ; 102(2): 859-892, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486392

RESUMO

Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Citoglobina/metabolismo , Células Endoteliais/metabolismo , Globinas/metabolismo , Animais , Humanos , Mioglobina/metabolismo , Neuroglobina/metabolismo
3.
Mol Cell ; 81(5): 998-1012.e7, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33440169

RESUMO

Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual ß-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , RNA Polimerase II/genética , Splicing de RNA , Elongação da Transcrição Genética , Globinas beta/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular Tumoral , Células Eritroides/citologia , Éxons , Humanos , Íntrons , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Mutação , Clivagem do RNA , RNA Polimerase II/metabolismo , Sítios de Splice de RNA , Spliceossomos/genética , Spliceossomos/metabolismo , Globinas beta/deficiência , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia
4.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463901

RESUMO

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Assuntos
Regulação da Expressão Gênica/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , gama-Globinas/genética , Sítios de Ligação , Linhagem Celular , Ativação Enzimática/genética , Epigênese Genética/genética , Células Eritroides/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Células K562 , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Domínios Proteicos , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
5.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38273654

RESUMO

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Assuntos
Edição de Genes , gama-Globinas , Humanos , Edição de Genes/métodos , gama-Globinas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Dedos de Zinco , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
6.
Mol Ther ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086133

RESUMO

Sickle cell disease (SCD) is a common, severe genetic blood disorder. Current pharmacotherapies are partially effective and allogeneic hematopoietic stem cell transplantation is associated with immune toxicities. Genome editing of patient hematopoietic stem cells (HSCs) to reactivate fetal hemoglobin (HbF) in erythroid progeny offers an alternative potentially curative approach to treat SCD. Although the FDA released guidelines for evaluating genome editing risks, it remains unclear how best to approach pre-clinical assessment of genome-edited cell products. Here, we describe rigorous pre-clinical development of a therapeutic γ-globin gene promoter editing strategy that supported an investigational new drug application cleared by the FDA. We compared γ-globin promoter and BCL11A enhancer targets, identified a potent HbF-inducing lead candidate, and tested our approach in mobilized CD34+ hematopoietic stem progenitor cells (HSPCs) from SCD patients. We observed efficient editing, HbF induction to predicted therapeutic levels, and reduced sickling. With single-cell analyses, we defined the heterogeneity of HbF induction and HBG1/HBG2 transcription. With CHANGE-seq for sensitive and unbiased off-target discovery followed by targeted sequencing, we did not detect off-target activity in edited HSPCs. Our study provides a blueprint for translating new ex vivo HSC genome editing strategies toward clinical trials for treating SCD and other blood disorders.

7.
Bioessays ; 45(10): e2300047, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37404089

RESUMO

Despite ever-increasing accumulation of genomic data, the fundamental question of how individual genes are switched on during development, lineage-specification and differentiation is not fully answered. It is widely accepted that this involves the interaction between at least three fundamental regulatory elements: enhancers, promoters and insulators. Enhancers contain transcription factor binding sites which are bound by transcription factors (TFs) and co-factors expressed during cell fate decisions and maintain imposed patterns of activation, at least in part, via their epigenetic modification. This information is transferred from enhancers to their cognate promoters often by coming into close physical proximity to form a 'transcriptional hub' containing a high concentration of TFs and co-factors. The mechanisms underlying these stages of transcriptional activation are not fully explained. This review focuses on how enhancers and promoters are activated during differentiation and how multiple enhancers work together to regulate gene expression. We illustrate the currently understood principles of how mammalian enhancers work and how they may be perturbed in enhanceropathies using expression of the α-globin gene cluster during erythropoiesis, as a model.


Assuntos
Elementos Facilitadores Genéticos , alfa-Globinas , Animais , Elementos Facilitadores Genéticos/genética , alfa-Globinas/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Biologia , Mamíferos/genética
8.
Genes Dev ; 31(16): 1704-1713, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916711

RESUMO

Chromatin structure is tightly intertwined with transcription regulation. Here we compared the chromosomal architectures of fetal and adult human erythroblasts and found that, globally, chromatin structures and compartments A/B are highly similar at both developmental stages. At a finer scale, we detected distinct folding patterns at the developmentally controlled ß-globin locus. Specifically, new fetal stage-specific contacts were uncovered between a region separating the fetal (γ) and adult (δ and ß) globin genes (encompassing the HBBP1 and BGLT3 noncoding genes) and two distal chromosomal sites (HS5 and 3'HS1) that flank the locus. In contrast, in adult cells, the HBBP1-BGLT3 region contacts the embryonic ε-globin gene, physically separating the fetal globin genes from the enhancer (locus control region [LCR]). Deletion of the HBBP1 region in adult cells alters contact landscapes in ways more closely resembling those of fetal cells, including increased LCR-γ-globin contacts. These changes are accompanied by strong increases in γ-globin transcription. Notably, the effects of HBBP1 removal on chromatin architecture and gene expression closely mimic those of deleting the fetal globin repressor BCL11A, implicating BCL11A in the function of the HBBP1 region. Our results uncover a new critical regulatory region as a potential target for therapeutic genome editing for hemoglobinopathies and highlight the power of chromosome conformation analysis in discovering new cis control elements.


Assuntos
Cromatina/química , Eritroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Elementos Reguladores de Transcrição , Globinas beta/genética , Adulto , Proteínas de Transporte/genética , Feto , Inativação Gênica , Humanos , Região de Controle de Locus Gênico , Proteínas Nucleares/genética , Pseudogenes , Proteínas Repressoras , Transcriptoma , gama-Globinas/genética
9.
Proteomics ; 24(14): e2300495, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38212249

RESUMO

Thalassemias are a group of inherited monogenic disorders characterized by defects in the synthesis of one or more of the globin chain subunits of the hemoglobin tetramer. Delta-beta (δß-) thalassemia has large deletions in the ß globin gene cluster involving δ- and ß-globin genes, leading to absent or reduced synthesis of both δ- and ß-globin chains. Here, we used direct globin-chain analysis using tandem mass spectrometry for the diagnosis of δß-thalassemia. Two cases from unrelated families were recruited for the study based on clinical and hematological evaluation. Peptides obtained after trypsin digestion of proteins extracted from red blood cell pellets from two affected individuals and their parents were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometric analysis revealed a severe reduction in δ, ß, and Aγ globin proteins with increased Gγ globin protein in the affected individuals. The diagnosis of Gγ(Aγδß)0 -thalassemia in the homozygous state in the affected individuals and in the heterozygous state in the parents was made from our results. The diagnosis was confirmed at the genetic level using multiplex ligation-dependent probe amplification (MLPA). Our findings demonstrate the utility of direct globin protein quantitation using LC-MS/MS to quantify individual globin proteins reflecting changes in globin production. This approach can be utilized for accurate and timely diagnosis of hemoglobinopathies, including rare variants, where existing diagnostic methods provide inconclusive results.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Masculino , Feminino , Cromatografia Líquida/métodos , Globinas beta/genética , gama-Globinas/genética
10.
Proteins ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219099

RESUMO

A fundamental problem in the field of protein evolutionary biology is determining the degree and nature of evolutionary relatedness among homologous proteins that have diverged to a point where they share less than 30% amino acid identity yet retain similar structures and/or functions. Such proteins are said to lie within the "Twilight Zone" of amino acid identity. Many researchers have leveraged experimentally determined structures in the quest to classify proteins in the Twilight Zone. Such endeavors can be highly time consuming and prohibitively expensive for large-scale analyses. Motivated by this problem, here we use molecular weight-hydrophobicity physicochemical dynamic time warping (MWHP DTW) to quantify similarity of simulated and real-world homologous protein domains. MWHP DTW is a physicochemical method requiring only the amino acid sequence to quantify similarity of related proteins and is particularly useful in determining similarity within the Twilight Zone due to its resilience to primary sequence substitution saturation. This is a step forward in determination of the relatedness among Twilight Zone proteins and most notably allows for the discrimination of random similarity and true homology in the 0%-20% identity range. This method was previously presented expeditiously just after the outbreak of COVID-19 because it was able to functionally cluster ACE2-binding betacoronavirus receptor binding domains (RBDs), a task that has been elusive using standard techniques. Here we show that one reason that MWHP DTW is an effective technique for comparisons within the Twilight Zone is because it can uncover hidden homology by exploiting physicochemical conservation, a problem that protein sequence alignment algorithms are inherently incapable of addressing within the Twilight Zone. Further, we present an extended definition of the Twilight Zone that incorporates the dynamic relationship between structural, physicochemical, and sequence-based metrics.

11.
Am J Physiol Endocrinol Metab ; 326(2): E178-E181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231000

RESUMO

To investigate gasocrine signaling, there is a critical need to identify gasoreceptors for the essential gasotransmitters like O2. Based on existing scientific literature, I propose that heme-based O2 sensors, featuring diverse signaling domains across genera, should be explicitly designated as O2 gasoreceptors. Acknowledging that O2 gasoreceptors are likely to belong to multiple protein classes with diverse signaling domains and pathways will facilitate a comprehensive search for O2 gasoreceptors in all organisms and across every cell type. This approach will broaden the investigation beyond specialized tissues or cells, encompassing a systemic exploration.


Assuntos
Gasotransmissores , Heme , Oxigênio , Oxigênio/metabolismo , Heme/metabolismo , Humanos , Animais , Gasotransmissores/metabolismo , Transdução de Sinais/fisiologia
12.
Br J Haematol ; 204(6): 2184-2193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578212

RESUMO

Sickle cell disease (SCD) arises from beta-globin gene mutations, with global estimates indicating around 500 000 affected neonates in 2021. In the United States, it is considered rare, impacting fewer than 200 000 individuals. The key pathogenic flaw lies in mutant haemoglobin S, prone to polymerization under low oxygen conditions, causing erythrocytes to adopt a sickled shape. This leads to complications like vascular occlusion, haemolytic anaemia, inflammation and organ damage. Beyond erythrocyte abnormalities however, there is a body of literature highlighting the hypercoagulable state that is likely a contributor to many of the complications we see in SCD. The persistent activation of the coagulation cascade results in thromboembolic events, notably venous thromboembolism (VTE) which is independently associated with increased mortality in both adults and children with SCD. While the increased risk of VTE in the SCD population seems well established, there is a lack of guidelines for thromboprophylaxis in this population. This Wider Perspective will describe the hypercoagulable state and increased thrombosis risk in the SCD population, as well as advocate for the development of evidence-based guidelines to aid in the prevention of VTE in SCD.


Assuntos
Anemia Falciforme , Tromboembolia Venosa , Anemia Falciforme/complicações , Humanos , Tromboembolia Venosa/prevenção & controle , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/epidemiologia , Anticoagulantes/uso terapêutico , Lacunas de Evidências
13.
J Gene Med ; 26(1): e3567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37455676

RESUMO

Sickle cell disease (SCD) results from a sequence defect in the ß-globin chain of adult hemoglobin (HbA) leading to expression of sickle hemoglobin (HbS). It is traditionally diagnosed by cellulose-acetate hemoglobin electrophoresis or high-performance liquid chromatography. While clinically useful, these methods have both sensitivity and specificity limitations. We developed a novel mass spectrometry (MS) method for the rapid, sensitive and highly quantitative detection of endogenous human ß-globin and sickle hß-globin, as well as lentiviral-encoded therapeutic hßAS3-globin in cultured cells and small quantities of mouse peripheral blood. The MS methods were used to phenotype homozygous HbA (AA), heterozygous HbA-HbS (AS) and homozygous HbS (SS) Townes SCD mice and detect lentiviral vector-encoded hßAS3-globin in transduced mouse erythroid cell cultures and transduced human CD34+ cells after erythroid differentiation. hßAS3-globin was also detected in peripheral blood 6 weeks post-transplant of transduced Townes SS bone marrow cells into syngeneic Townes SS mice and persisted for over 20 weeks post-transplant. As several genome-editing and gene therapy approaches for severe hemoglobin disorders are currently in clinical trials, this MS method will be useful for patient assessment before treatment and during follow-up.


Assuntos
Anemia Falciforme , Lentivirus , Adulto , Camundongos , Animais , Humanos , Lentivirus/genética , Vetores Genéticos/genética , Hemoglobinas/genética , Hemoglobinas/metabolismo , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Anemia Falciforme/terapia , Globinas beta/genética , Células Cultivadas , Espectrometria de Massas
14.
Blood Cells Mol Dis ; 104: 102792, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633023

RESUMO

Sickle cell disease (SCD) is the most common ß-hemoglobinopathy caused by various mutations in the adult ß-globin gene resulting in sickle hemoglobin production, chronic hemolytic anemia, pain, and progressive organ damage. The best therapeutic strategies to manage the clinical symptoms of SCD is the induction of fetal hemoglobin (HbF) using chemical agents. At present, among the Food and Drug Administration-approved drugs to treat SCD, hydroxyurea is the only one proven to induce HbF protein synthesis, however, it is not effective in all people. Therefore, we evaluated the ability of the novel Bach1 inhibitor, HPP-D to induce HbF in KU812 cells and primary sickle erythroid progenitors. HPP-D increased HbF and decreased Bach1 protein levels in both cell types. Furthermore, chromatin immunoprecipitation assay showed reduced Bach1 and increased NRF2 binding to the γ-globin promoter antioxidant response elements. We also observed increased levels of the active histone marks H3K4Me1 and H3K4Me3 supporting an open chromatin configuration. In primary sickle erythroid progenitors, HPP-D increased γ-globin transcription and HbF positive cells and reduced sickled erythroid progenitors under hypoxia conditions. Collectively, our data demonstrate that HPP-D induces γ-globin gene transcription through Bach1 inhibition and enhanced NRF2 binding in the γ-globin promoter antioxidant response elements.


Assuntos
Anemia Falciforme , gama-Globinas , Humanos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , Hemoglobina Falciforme/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Ativação Transcricional/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo
15.
Blood Cells Mol Dis ; 109: 102883, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39154456

RESUMO

Despite several existing laboratory-based studies of hemoglobin (Hb) E (HBB:c.79 G > A)/ ß (nucleotide (NT) -28 A > G) (HBB:c.-78 A > G) -thalassemia, no reports have ever provided clinical severity information as well as dependency of blood transfusion. Previously, a comparative study of community- and hospital-recruited Hb E/ß-thalassemia subjects was conducted in the lower northern Thailand between June 2020 and December 2021. A mobile medical team visited each community hospital on-site, collecting clinical severity parameters, and conducting Hb and DNA analyses. The control included Hb E/ß-thalassemia patients undergoing transfusions. Subgroup study of adult Hb E/ß (NT -28 A > G) -thalassemia subjects was subsequently conducted. Additional pediatric individuals were recruited from prenatal diagnosis databases. Twenty adult and nine pediatric subjects were enrolled; all were classified as having mild disease severity. Twenty-two individuals (75.9 %) were asymptomatic. Six adults (20.7 %) required blood transfusion. The mean Hb level of subjects without transfusion (23 [79.3 %]) was 10.77 ± 1.10 g/dL. Hb analysis revealed a distinct EFA pattern with low Hb F fraction. The positive impact of genetic modifiers could not be statistically demonstrated except rs7482144-XmnI. These findings could provide essential information for parents carrying fetuses with Hb E/ß (NT -28 A > G) -thalassemia.

16.
Hum Genomics ; 17(1): 38, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098594

RESUMO

BACKGROUND: At present, the methods generally used to detect α-thalassemia mutations are confined to detecting common mutations, which may lead to misdiagnosis or missed diagnosis. The single-molecule real-time (SMRT) sequencing enables long-read single-molecule sequencing with high detection accuracy, and long-length DNA chain reads in high-fidelity read mode. This study aimed to identify novel large deletions and complex variants in the α-globin locus in Chinese population. METHODS: We used SMRT sequencing to detect rare and complex variants in the α-globin locus in four individuals whose hematological data indicated microcytic hypochromic anemia. However, the conventional thalassemia detection result was negative. Multiplex ligation-dependent probe amplification and droplet digital polymerase chain reaction were used to confirm SMRT sequencing results. RESULTS: Four novel large deletions were observed ranging from 23 to 81 kb in the α-globin locus. One patient also had a duplication of upstream of HBZ in the deletional region, while another, with a 27.31-kb deletion on chromosome 16 (hg 38), had abnormal hemoglobin Siriraj (Hb Siriraj). CONCLUSION: We first identified the four novel deletions in the α-globin locus using SMRT sequencing. Considering that the conventional methods might lead to misdiagnosis or missed diagnosis, SMRT sequencing proved to be an excellent method to discover rare and complex variants in thalassemia, especially in prenatal diagnosis.


Assuntos
População do Leste Asiático , alfa-Globinas , Humanos , alfa-Globinas/genética , Talassemia alfa/genética , Anemia Hipocrômica/genética , População do Leste Asiático/genética , Mutação
17.
Adv Exp Med Biol ; 1459: 199-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017845

RESUMO

BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2ß2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and ß-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and ß-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.


Assuntos
Células Eritroides , Proteínas Repressoras , Animais , Humanos , Camundongos , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Edição de Genes/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
18.
Biochem Genet ; 62(2): 666-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37395849

RESUMO

Short tandem repeats located 5' prime to the ß-globin gene, have been observed to be in linkage disequilibrium with the HbS allele, and thought to affect the severity of sickle cell disease. Here, we report on new mutants within the HBG2 region that may impact sickle cell disease. To determine the cis-acting elements microsatellites, indels and single nucleotide polymorphisms (SNPs), within the HBG2 region by sequencing, in subjects with sickle cell disease. The case-control study was located at the Center for Clinical Genetics, Sickle cell unit, Korle-Bu Teaching Hospital. A questionnaire was used for demographic data and clinical information. Hematological profile (red blood cell, white blood cell, platelet, hemoglobin and mean corpuscular volume) were assessed in 83 subjects. A set of 45 samples comprising amplified DNA on the HBG2 gene from HbSS (22), HbSC (17) and 6 controls (HbAA) were sequenced. Differences in the microsatellite region between sickle cell disease (SCD) (HbSS and HbSC) genotypes and control subjects were identified by counting and assessed by Chi-square analysis. Red blood cells, hematocrit, platelets, white blood cells and hemoglobin indices differed in genotypic groups. HbSS subjects were affirmed to have severer hemolytic anemia than HbSC subjects. Two indels (T1824 and C905) were seen in both SS and SC genotypes. Two peculiar SNPs: G:T1860 (transition) and A:G1872 transversions were found within the HBG2 gene that were significantly associated with the HbSS genotype (Fisher's exact test, p = 0.006) and HbS allele respectively (Fisher's exact test, p = 0.006). Cis-acting elements in HbSS and HbSC were different and may contribute to the phenotype seen in the disease state.

19.
Hemoglobin ; : 1-3, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103306

RESUMO

Hemoglobin Strasbourg is a rare high oxygen affinity hemoglobin variant which leads to secondary erythrocytosis. This variant is caused by a HBB gene mutation c.71T > A resulting in an amino acid exchange on position 23 of the ß globin chain (p.Val23Asp.). The influence of Hb Strasbourg on HbA1c measurement has not been studied to date. For patients with hemoglobin variants it is important to know whether possible interferences exist with the measurement of HbA1c. We therefore investigated the influence of Hb Strasbourg on HbA1c measurement with two different HPLC (high-performance liquid chromatography) systems and one turbidimetric immunoassay in two non-diabetic brothers who are heterozygous carriers of Hb Strasbourg. The examined tests are all used in routine diagnostics. In the case of Hb Strasbourg, the HbA1c measured by HPLC showed lower results than those obtained by the immunoassay. We conclude that HbA1c is underestimated when measured with these methods as glycated Hb Strasbourg is most likely not co-eluting with HbA1c in HPLC.

20.
Hemoglobin ; : 1-6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693050

RESUMO

Copy number variations (CNVs) involving the α-globin gene cluster can lead to an imbalance in the proportion of α- and ß-globin chains and consequently cause clinical symptoms of ß-thalassemia. In our case, a 6-year-old boy, clinically diagnosed with ß thalassemia intermedia, was admitted for further genetic diagnosis with his family. Targeted sequencing and third generation sequencing (TGS) were used to detect the possible variants of the thalassemia genes. Low-pass whole genome sequencing (lpWGS) was conducted to specify the exact location of relevant CNVs across the genome, which was then validated by multiplex ligation-dependent probe amplification.The results revealed that the patient had a heterozygous ß0 mutation of Codon17 (A > T) and a full duplication of the α-globin gene cluster, inherited from his mother and father, respectively. Besides, a novel point mutation within the 5' untranslated region of ß-Globin (HBB: c. -175 (G > A) was only detected in the patient. This study suggests that lpWGS seems a powerful alternative to detect large CNVs related to thalassemia with second intention for more information of the breakpoints and a simultaneous genome-scale detection of other pathogenic CNVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA