Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Metab Brain Dis ; 36(4): 711-722, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528752

RESUMO

Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Proteína C-Reativa/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/métodos , Fluoxetina/administração & dosagem , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína C-Reativa/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo
2.
Neurochem Res ; 44(3): 562-571, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28856535

RESUMO

During the course of development, molecular mechanisms underlying activity-dependent synaptic plasticity change considerably. At immature CA3-CA1 synapses in the hippocampus, PKA-driven synaptic insertion of GluA4 AMPA receptors is the predominant mechanism for synaptic strengthening. However, the physiological significance of the developmentally restricted GluA4-dependent plasticity mechanisms is poorly understood. Here we have used microelectrode array (MEA) recordings in GluA4 deficient slice cultures to study the role of GluA4 in early development of the hippocampal circuit function. We find that during the first week in culture (DIV2-6) when GluA4 expression is restricted to pyramidal neurons, loss of GluA4 has no effect on the overall excitability of the immature network, but significantly impairs synchronization of the CA3 and CA1 neuronal populations. In the absence of GluA4, the temporal correlation of the population spiking activity between CA3-CA1 neurons was significantly lower as compared to wild-types at DIV6. Our data show that synapse-level defects in transmission and plasticity mechanisms are efficiently compensated for to normalize population firing rate at the immature hippocampal network. However, lack of the plasticity mechanisms typical for the immature synapses may perturb functional coupling between neuronal sub-populations, a defect frequently implicated in the context of developmentally originating neuropsychiatric disorders.


Assuntos
Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Camundongos Knockout , Sinapses/fisiologia
3.
Glia ; 66(9): 1896-1914, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29704264

RESUMO

Glutamate receptor subunit 4 (GluA4) is highly expressed by neural cells sensitive to excitotoxicity, and is the predominant subunit expressed by oligodendrocyte precursor cells (OPC) during a key period of vulnerability to hypoxic-ischemic injury. Therefore, transcriptional networks downstream of excitotoxic GluA4 activation represent a promising area for therapeutic intervention. In this work, we identify the CCAAT binding transcription factor NF-Yb as a novel transcriptional regulator of Gria4 (GluA4 gene), and a controller of excitotoxic death in the oligodendroglial lineage. We describe a novel regulatory region within Gria4 containing CCAAT sequences whose binding by NF-Yb is regulated by excitotoxicity. Excitotoxicity-induced alterations in NF-Yb binding are associated with changes in Gria4 transcription, while knockdown of NF-Yb alters the transcription of reporter constructs containing this regulatory region. Data from immortalized and primary OPC reveal that RNAi and pharmacological disruption of NF-Yb alter Gria4 transcription, with the latter inducing apoptosis and influencing a set of apoptotic genes similarly regulated during excitotoxicity. These data provide the first definition of a trans-acting mechanism regulating Gria4, and identify the NF-Y network as a potential source of pharmacological targets for promoting OPC survival.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Sobrevivência Celular/fisiologia , Oligodendroglia/metabolismo , Receptores de AMPA/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fator de Ligação a CCAAT/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Receptores de AMPA/genética , Sequências Reguladoras de Ácido Nucleico , Terpenos/farmacologia , Transcrição Gênica
4.
J Neurosci ; 36(43): 11024-11036, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798183

RESUMO

The auxiliary subunit α2δ2 modulates the abundance and function of voltage-gated calcium channels. Here we show that α2δ2 mRNA is expressed in neonatal and mature hair cells. A functional α2δ2-null mouse, the ducky mouse (du), showed elevated auditory brainstem response click and frequency-dependent hearing thresholds. Otoacoustic emissions were not impaired pointing to normal outer hair cell function. Peak Ca2+ and Ba2+ currents of mature du/du inner hair cells (IHCs) were reduced by 30-40%, respectively, and gating properties, such as the voltage of half-maximum activation and voltage sensitivity, were altered, indicating that Cav1.3 channels normally coassemble with α2δ2 at IHC presynapses. The reduction of depolarization-evoked exocytosis in du/du IHCs reflected their reduced Ca2+ currents. Ca2+- and voltage-dependent K+ (BK) currents and the expression of the pore-forming BKα protein were normal. Cav1.3 and Cavß2 protein expression was unchanged in du/du IHCs, forming clusters at presynaptic ribbons. However, the close apposition of presynaptic Cav1.3 clusters with postsynaptic glutamate receptor GluA4 and PSD-95 clusters was significantly impaired in du/du mice. This implies that, in addition to controlling the expression and gating properties of Cav1.3 channels, the largely extracellularly localized α2δ2 subunit moreover plays a so far unknown role in mediating trans-synaptic alignment of presynaptic Ca2+ channels and postsynaptic AMPA receptors. SIGNIFICANCE STATEMENT: Inner hair cells possess calcium channels that are essential for transmitting sound information into synaptic transmitter release. Voltage-gated calcium channels can coassemble with auxiliary subunit α2δ isoforms 1-4. We found that hair cells of the mouse express the auxiliary subunit α2δ2, which is needed for normal hearing thresholds. Using a mouse model with a mutant, nonfunctional α2δ2 protein, we showed that the α2δ2 protein is necessary for normal calcium currents and exocytosis in inner hair cells. Unexpectedly, the α2δ2 protein is moreover required for the optimal spatial alignment of presynaptic calcium channels and postsynaptic glutamate receptor proteins across the synaptic cleft. This suggests that α2δ2 plays a novel role in organizing the synapse.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Células Ciliadas Auditivas Internas/fisiologia , Audição/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Amino Acids ; 49(1): 117-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714514

RESUMO

AMPA receptors mediate most fast excitatory synaptic transmission in the brain. Highly dynamic AMPA receptors are subjected to trafficking, recycling, and/or degradation and replacement. Changes in AMPA receptor abundance is an important mechanism involved in learning and memory formation. Results obtained with the Morris water maze (MWM), a paradigm for testing spatial memory in rodent, correlate with hippocampal synaptic plasticity and NMDA function. Different phases of spatial learning like acquisition and retrieval involve AMPA receptors. Long-term memory formation requires dynamic changes in gene transcription and protein synthesis. It is, however, not known so far if epigenetic marks such as DNA methylation and mRNA levels participate in regulation of AMPA receptors in hippocampus during memory retrieval. In the present study, rats were trained or untrained in the MWM. Steady state levels of hippocampal GluA1-4 mRNA were determined by RT-PCR and promoter methylation levels of GluA1-4 by in-house developed bisulfite pyrosequencing methods. GluA1-4 protein levels were determined in parallel in a membrane fraction by SDS-PAGE followed by Western blotting. Our results indicate that changes of hippocampal membrane AMPA receptors were modulated at the protein level, while no changes were observed at the mRNA and at the promoter methylation level of hippocampal GluA1-4. Training in the MWM at retrieval may, therefore, involve GluA2 and GluA4 subunits that may be regulated by protein stability or trafficking as protein determinations were carried out in a hippocampal membrane fraction.


Assuntos
Epigênese Genética , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Isoformas de Proteínas/genética , Receptores de AMPA/genética , Animais , Metilação de DNA , Masculino , Plasticidade Neuronal , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Análise de Sequência de DNA , Transmissão Sináptica
6.
J Neurophysiol ; 115(6): 2989-96, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26961102

RESUMO

Development of the neuronal circuitry involves both Hebbian and homeostatic plasticity mechanisms that orchestrate activity-dependent refinement of the synaptic connectivity. AMPA receptor subunit GluA4 is expressed in hippocampal pyramidal neurons during early postnatal period and is critical for neonatal long-term potentiation; however, its role in homeostatic plasticity is unknown. Here we show that GluA4-dependent plasticity mechanisms allow immature synapses to promptly respond to alterations in network activity. In the neonatal CA3, the threshold for homeostatic plasticity is low, and a 15-h activity blockage with tetrodotoxin triggers homeostatic upregulation of glutamatergic transmission. On the other hand, attenuation of the correlated high-frequency bursting in the CA3-CA1 circuitry leads to weakening of AMPA transmission in CA1, thus reflecting a critical role for Hebbian synapse induction in the developing CA3-CA1. Both of these developmentally restricted forms of plasticity were absent in GluA4(-/-) mice. These data suggest that GluA4 enables efficient homeostatic upscaling and responsiveness to temporal activity patterns during the critical period of activity-dependent refinement of the circuitry.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Células Piramidais/fisiologia , Receptores de AMPA/deficiência , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Carbenoxolona/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Hipocampo/crescimento & desenvolvimento , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Receptores de AMPA/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Tetrodotoxina/farmacologia , Fatores de Tempo
7.
Cereb Cortex ; 23(11): 2754-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941723

RESUMO

Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Ácido Glutâmico/metabolismo , Sinapses/fisiologia , Animais , Fosfoproteínas Fosfatases/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/metabolismo , Transmissão Sináptica/fisiologia
8.
Mol Neurobiol ; 61(9): 6599-6612, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38329681

RESUMO

Autism spectrum disorder (ASD) is associated with a range of abnormalities characterized by deficits in socialization, communication, repetitive behaviors, and restricted interests. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was decreased in the basolateral amygdala (BLA) of mice after postnatal valproic acid exposure. Neuronal activity-regulated pentraxin (Narp) could contribute to the regulation of the GluA4 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) subunits which are predominantly expressed in interneurons. However, the specific role of nNOS re-expression on excitatory neurotransmitter with relevance to ASD core symptoms in VPA-treated animals remains to be elucidated. Herein, nNOS overexpression using a lentiviral vector and L-arginine-activating PI3K-Akt-mTOR signaling can restore nNOS expression in the BLA induced by VPA. Restoration of nNOS expression in these mice was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, stereotyped/repetitive behaviors, and anxiety-like traits. Most strikingly, re-expression of nNOS upregulated surface expression of Narp and GluA4 in nNOS-positive interneuron as shown by immunoprecipitation and Western blotting. Whole-cell patch-clamp recordings demonstrated that restoration of nNOS had a significant enhancing effect on AMPA receptor-mediated excitatory glutamatergic synaptic neurotransmission, which was inhibited by disturbing the interaction between Narp and GluA4 in acutely dissociated BLA slices. Overall, these data offer a scientific basis for the additional study of nNOS re-expression as a promising therapeutic target by correcting AMPA receptor-mediated synaptic function in ASD and related neurodevelopmental disorders.


Assuntos
Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo I , Fenótipo , Receptores de AMPA , Transmissão Sináptica , Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores de AMPA/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Masculino , Transtorno Autístico/metabolismo , Camundongos , Ácido Valproico/farmacologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
9.
Hear Res ; 414: 108410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915397

RESUMO

The primary startle response (SR) is an innate reaction evoked by sudden and intense acoustic, tactile or visual stimuli. In rodents and humans the SR involves reflexive contractions of the face, neck and limb muscles. The acoustic startle response (ASR) pathway consists of auditory nerve fibers (AN), cochlear root neurons (CRNs) and giant neurons of the caudal pontine reticular nucleus (PnC), which synapse on cranial and spinal motor neurons. The tactile startle response (TSR) is transmitted by primary sensory neurons to the principal sensory (Pr5) and spinal (Sp5) trigeminal nuclei. The ventral part of Pr5 projects directly to the PnC neurons. The SR requires rapid transmission of sensory information to initiate a fast motor response. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) are necessary to transmit auditory information to the PnC neurons and elicit the SR. AMPARs containing the glutamate AMPAR subunit 4 (GluA4) have fast kinetics, which makes them ideal candidates to transmit the SR signal. This study examined the role of GluA4 within the primary SR pathway by using GluA4 knockout (GluA4-KO) mice. Deletion of GluA4 considerably decreased the amplitude and probability of successful ASR and TSR, indicating that the presence of this subunit is critical at a common station within the startle pathway. We conclude that deletion of GluA4 affects the transmission of sensory signals from acoustic and tactile pathways to the motor component of the startle reflex. Therefore, GluA4 is required for the full response and for reliable elicitation of the startle response.


Assuntos
Neurônios , Reflexo de Sobressalto , Estimulação Acústica , Acústica , Animais , Camundongos , Neurônios/fisiologia , Reflexo de Sobressalto/fisiologia , Sinapses
10.
Mol Neurodegener ; 15(1): 46, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807227

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the major cause of death in adults with Down syndrome (DS). There is an urgent need for objective markers of AD in the DS population to improve early diagnosis and monitor disease progression. NPTX2 has recently emerged as a promising cerebrospinal fluid (CSF) biomarker of Alzheimer-related inhibitory circuit dysfunction in sporadic AD patients. The objective of this study was to evaluate NPTX2 in the CSF of adults with DS and to explore the relationship of NPTX2 to CSF levels of the PV interneuron receptor, GluA4, and existing AD biomarkers (CSF and neuroimaging). METHODS: This is a cross-sectional, retrospective study of adults with DS with asymptomatic AD (aDS, n = 49), prodromal AD (pDS, n = 18) and AD dementia (dDS, n = 27). Non-trisomic controls (n = 34) and patients with sporadic AD dementia (sAD, n = 40) were included for comparison. We compared group differences in CSF NPTX2 according to clinical diagnosis and degree of intellectual disability. We determined the relationship of CSF NPTX2 levels to age, cognitive performance (CAMCOG, free and cued selective reminding, semantic verbal fluency), CSF levels of a PV-interneuron marker (GluA4) and core AD biomarkers; CSF Aß1-42, CSF t-tau, cortical atrophy (magnetic resonance imaging) and glucose metabolism ([18F]-fluorodeoxyglucose positron emission tomography). RESULTS: Compared to controls, mean CSF NPTX2 levels were lower in DS at all AD stages; aDS (0.6-fold, adj.p < 0.0001), pDS (0.5-fold, adj.p < 0.0001) and dDS (0.3-fold, adj.p < 0.0001). This reduction was similar to that observed in sporadic AD (0.5-fold, adj.p < 0.0001). CSF NPTX2 levels were not associated with age (p = 0.6), intellectual disability (p = 0.7) or cognitive performance (all p > 0.07). Low CSF NPTX2 levels were associated with low GluA4 in all clinical groups; controls (r2 = 0.2, p = 0.003), adults with DS (r2 = 0.4, p < 0.0001) and sporadic AD (r2 = 0.4, p < 0.0001). In adults with DS, low CSF NPTX2 levels were associated with low CSF Aß1-42 (r2 > 0.3, p < 0.006), low CSF t-tau (r2 > 0.3, p < 0.001), increased cortical atrophy (p < 0.05) and reduced glucose metabolism (p < 0.05). CONCLUSIONS: Low levels of CSF NPTX2, a protein implicated in inhibitory circuit function, is common to sporadic and genetic forms of AD. CSF NPTX2 represents a promising CSF surrogate marker of early AD-related changes in adults with DS.


Assuntos
Doença de Alzheimer/genética , Biomarcadores/líquido cefalorraquidiano , Proteína C-Reativa/líquido cefalorraquidiano , Síndrome de Down/líquido cefalorraquidiano , Síndrome de Down/complicações , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Mol Ther Methods Clin Dev ; 14: 252-260, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31463334

RESUMO

Selective gene delivery into subtypes of interneurons remains an important challenge in vector development. Adeno-associated virus (AAV) vector particles are especially promising for intracerebral injections. For cell entry, AAV2 particles are supposed to attach to heparan-sulfate proteoglycans (HSPGs) followed by endocytosis via the AAV receptor (AAVR). Here, we assessed engineered AAV particles deficient in HSPG attachment but competent in recognizing the glutamate receptor 4 (GluA4, also known as GluRD or GRIA4) through a displayed GluA4-specific DARPin (designed ankyrin repeat protein). When injected into the mouse brain, histological evaluation revealed that in various regions, more than 90% of the transduced cells were interneurons, mainly of the parvalbumin-positive subtype. Although part of the selectivity was mediated by the DARPin, the chosen spleen focus-forming virus (SFFV) promoter had contributed as well. Further analysis revealed that the DARPin mediated selective attachment to GluA4-positive cells, whereas gene delivery required expression of AAVR. Our data suggest that cell selectivity of AAV particles can be modified rationally and efficiently through DARPins, but expression of the AAV entry receptor remains essential.

12.
Mol Ther Methods Clin Dev ; 10: 128-143, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30101151

RESUMO

Delivering genes selectively to the therapeutically relevant cell type is among the prime goals of vector development. Here, we present a high-throughput selection and screening process that identifies designed ankyrin repeat proteins (DARPins) optimally suited for receptor-targeted gene delivery using adeno-associated viral (AAV) and lentiviral (LV) vectors. In particular, the process includes expression, purification, and in situ biotinylation of the extracellular domains of target receptors as Fc fusion proteins in mammalian cells and the selection of high-affinity binders by ribosome display from DARPin libraries each covering more than 1012 variants. This way, DARPins specific for the glutamate receptor subunit GluA4, the endothelial surface marker CD105, and the natural killer cell marker NKp46 were generated. The identification of DARPins best suited for gene delivery was achieved by screening small-scale vector productions. Both LV and AAV particles displaying the selected DARPins transduced only cells expressing the corresponding target receptor. The data confirm that a straightforward process for the generation of receptor-targeted viral vectors has been established. Moreover, biochemical analysis of a panel of DARPins revealed that their functional cell-surface expression as fusion proteins is more relevant for efficient gene delivery by LV particles than functional binding affinity.

13.
Neuron ; 98(4): 783-800.e4, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29706584

RESUMO

How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.


Assuntos
Plasticidade Neuronal , Neurônios/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Retículo Endoplasmático/metabolismo , Potenciais Pós-Sinápticos Excitadores , Complexo de Golgi/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Microdomínios da Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores de AMPA/metabolismo , Transdução de Sinais , Transmissão Sináptica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Neuropharmacology ; 112(Pt A): 46-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157711

RESUMO

Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Ácido Glutâmico/metabolismo , Cultura Primária de Células , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos Wistar
15.
Int J Biol Macromol ; 92: 779-787, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27402461

RESUMO

A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4, the likely binding epitope for FabL9 was predicted. This study demonstrates a simple approach for development of antibody fragments towards specific sub-domains of a large ligand-gated ion channel, and this method could be utilized for all multi-domain surface receptors where antibody domain-selectivity may be desirable. Furthermore, we present for the first time a GluA4 subtype-specific murine Fab fragment targeting the LBD of the receptor.


Assuntos
Epitopos/química , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Biblioteca de Peptídeos , Receptores de AMPA/química , Sequência de Aminoácidos , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Química Encefálica , Células Clonais , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Feminino , Imunização , Fragmentos Fab das Imunoglobulinas/biossíntese , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Multimerização Proteica , Ratos , Receptores de AMPA/administração & dosagem , Receptores de AMPA/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Alinhamento de Sequência
16.
Front Cell Neurosci ; 7: 156, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065886

RESUMO

Paradoxical seizure exacerbation by anti-epileptic medication is a well-known clinical phenomenon in epilepsy, but the cellular mechanisms remain unclear. One possibility is enhanced network disinhibition by unintended suppression of inhibitory interneurons. We investigated this hypothesis in the stargazer mouse model of absence epilepsy, which bears a mutation in stargazin, an AMPA receptor trafficking protein. If AMPA signaling onto inhibitory GABAergic neurons is impaired, their activation by glutamate depends critically upon NMDA receptors. Indeed, we find that stargazer seizures are exacerbated by NMDA receptor blockade with CPP (3-[(R)-2-carboxypiperazin-4-yl]-prop-2-enyl-1-phosphonic acid) and MK-801, whereas other genetic absence epilepsy models are sensitive to these antagonists. To determine how an AMPA receptor trafficking defect could lead to paradoxical network activation, we analyzed stargazin and AMPA receptor localization and found that stargazin is detected exclusively in parvalbumin-positive (PV (+)) fast-spiking interneurons in somatosensory cortex, where it is co-expressed with the AMPA receptor subunit GluA4. PV (+) cortical interneurons in stargazer show a near twofold decrease in the dendrite:soma GluA4 expression ratio compared to wild-type (WT) littermates. We explored the functional consequence of this trafficking defect on network excitability in neocortical slices. Both NMDA receptor antagonists suppressed 0 Mg (2) (+)-induced network discharges in WT but augmented bursting in stargazer cortex. Interneurons mediate this paradoxical response, since the difference between genotypes was masked by GABA receptor blockade. Our findings provide a cellular locus for AMPA receptor-dependent signaling defects in stargazer cortex and define an interneuron-dependent mechanism for paradoxical seizure exacerbation in absence epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA