Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 479(12): 1317-1336, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35670459

RESUMO

Pharmacological AMPK activation represents an attractive approach for the treatment of type 2 diabetes (T2D). AMPK activation increases skeletal muscle glucose uptake, but there is controversy as to whether AMPK activation also inhibits hepatic glucose production (HGP) and pharmacological AMPK activators can have off-target effects that contribute to their anti-diabetic properties. The main aim was to investigate the effects of 991 and other direct AMPK activators on HGP and determine whether the observed effects were AMPK-dependent. In incubated hepatocytes, 991 substantially decreased gluconeogenesis from lactate, pyruvate and glycerol, but not from other substrates. Hepatocytes from AMPKß1-/- mice had substantially reduced liver AMPK activity, yet the inhibition of glucose production by 991 persisted. Also, the glucose-lowering effect of 991 was still seen in AMPKß1-/- mice subjected to an intraperitoneal pyruvate tolerance test. The AMPK-independent mechanism by which 991 treatment decreased gluconeogenesis could be explained by inhibition of mitochondrial pyruvate uptake and inhibition of mitochondrial sn-glycerol-3-phosphate dehydrogenase-2. However, 991 and new-generation direct small-molecule AMPK activators antagonized glucagon-induced gluconeogenesis in an AMPK-dependent manner. Our studies support the notion that direct pharmacological activation of hepatic AMPK as well as inhibition of pyruvate uptake could be an option for the treatment of T2D-linked hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Glucagon , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Gluconeogênese , Glucose/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Camundongos , Ácido Pirúvico/metabolismo
2.
Biochim Biophys Acta ; 1863(1): 148-56, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26516056

RESUMO

Saccharomyces cerevisiae glycerol phosphate dehydrogenase 1 (Gpd1) and nicotinamidase (Pnc1) are two stress-induced enzymes. Both enzymes are predominantly localised to peroxisomes at normal growth conditions, but were reported to localise to the cytosol and nucleus upon exposure of cells to stress. Import of both proteins into peroxisomes depends on the peroxisomal targeting signal 2 (PTS2) receptor Pex7. Gpd1 contains a PTS2, however, Pnc1 lacks this sequence. Here we show that Pnc1 physically interacts with Gpd1, which is required for piggy-back import of Pnc1 into peroxisomes. Quantitative fluorescence microscopy analyses revealed that the levels of both proteins increased in peroxisomes and in the cytosol upon exposure of cells to stress. However, upon exposure of cells to stress we also observed enhanced cytosolic levels of the control PTS2 protein thiolase, when produced under control of the GPD1 promoter. This suggests that these conditions cause a partial defect in PTS2 protein import, probably because the PTS2 import pathway is easily saturated.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Nicotinamidase/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Nicotinamidase/genética , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Transporte Proteico/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Biochim Biophys Acta ; 1837(1): 73-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23933018

RESUMO

The branched respiratory chain in mitochondria from the halotolerant yeast Debaryomyces hansenii contains the classical complexes I, II, III and IV plus a cyanide-insensitive, AMP-activated, alternative-oxidase (AOX). Two additional alternative oxidoreductases were found in this organism: an alternative NADH dehydrogenase (NDH2e) and a mitochondrial isoform of glycerol-phosphate dehydrogenase (MitGPDH). These monomeric enzymes lack proton pump activity. They are located on the outer face of the inner mitochondrial membrane. NDH2e oxidizes exogenous NADH in a rotenone-insensitive, flavone-sensitive, process. AOX seems to be constitutive; nonetheless, most electrons are transferred to the cytochromic pathway. Respiratory supercomplexes containing complexes I, III and IV in different stoichiometries were detected. Dimeric complex V was also detected. In-gel activity of NADH dehydrogenase, mass spectrometry, and cytochrome c oxidase and ATPase activities led to determine the composition of the putative supercomplexes. Molecular weights were estimated by comparison with those from the yeast Y. lipolytica and they were IV2, I-IV, III2-IV4, V2, I-III2, I-III2-IV, I-III2-IV2, I-III2-IV3 and I-III2-IV4. Binding of the alternative enzymes to supercomplexes was not detected. This is the first report on the structure and organization of the mitochondrial respiratory chain from D. hansenii.


Assuntos
Complexo I de Transporte de Elétrons/química , Transporte de Elétrons , Glicerolfosfato Desidrogenase/química , NADH Desidrogenase/química , Oxirredutases/química , Sequência de Aminoácidos , Respiração Celular/fisiologia , Debaryomyces/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Glicerolfosfato Desidrogenase/fisiologia , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/fisiologia , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
4.
Exp Cell Res ; 319(19): 2905-15, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24075964

RESUMO

Gastroesophageal reflux disease has been implicated in the pathogenesis of adenocarcinoma of the oesophagus. The same applies to laryngopharyngeal reflux (LPR) and squamous cell cancer of the head and neck, but so far, this link has not been proven. The impact of low pH and bile acids has not been studied extensively in cells other than oesophageal cancer cell lines and tissue. The aims of this study were to investigate the pathogenic potential of reflux and its single components on the mucosa of the upper respiratory tract. We measured DNA stability in human miniorgan cultures (MOCs) and primary epithelial cell cultures (EpCs) in response to reflux by the alkaline comet assay. As matrix metalloproteinases (MMPs) are involved in extracellular matrix remodelling processes and may contribute to cancer progression, we studied the expression of MMP1, -9, and -14 in MOCs, EpC, UM-SCC-22B, and FADUDD. DNA strand breaks (DNA-SBs) increased significantly at low pH and after incubation with human or artificial gastric juice. Single incubation with glycochenodeoxycholic acid also showed a significant increase in DNA-SBs. In epithelial cell cultures, human gastric juice increased the number of DNA-SBs at pH 4.5 and 5.5. Artificial gastric juice significantly up regulated the gene expression of MMP9. Western blot analysis confirmed the results of gene expression analysis, but the up regulation of MMP1, -9, and -14 was donor-specific. Reflux has the ability to promote genomic instability and may contribute to micro environmental changes suitable for the initiation of malignancy. Further functional gene analysis may elucidate the role of laryngopharyngeal reflux in the development of head neck squamous cell carcinoma (HNSCC).


Assuntos
Carcinoma de Células Escamosas/metabolismo , Dano ao DNA , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , DNA/genética , Dano ao DNA/fisiologia , Células Epiteliais/metabolismo , Esôfago/metabolismo , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/metabolismo , Genes/fisiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Células Tumorais Cultivadas
5.
Mol Genet Metab Rep ; 35: 100967, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967723

RESUMO

The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.

6.
Redox Biol ; 1: 498-507, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24251118

RESUMO

Reactive oxygen species have been implicated in feeding control through involvement in brain lipid sensing, and regulating NPY/AgRP and pro-opiomelanocortin (POMC) neurons, although the underlying mechanisms are unclear. Nitric oxide is a signaling molecule in neurons and it stimulates feeding in many species. Whether reactive oxygen species affect feeding through interaction with nitric oxide is unclear. We previously reported that Immp2l mutation in mice causes excessive mitochondrial superoxide generation, which causes infertility and early signs of aging. In our present study, reduced food intake in mutant mice resulted in significantly reduced body weight and fat composition while energy expenditure remained unchanged. Lysate from mutant brain showed a significant decrease in cGMP levels, suggesting insufficient nitric oxide signaling. Thus, our data suggests that reactive oxygen species may regulate food intake through modulating the bioavailability of nitric oxide.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Endopeptidases/genética , Proteínas Mitocondriais/genética , Óxido Nítrico/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Ingestão de Alimentos/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA