Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473706

RESUMO

Acute kidney injury (AKI) is a common clinical problem with high morbidity and mortality. The discovery of ferroptosis has provided novel insights into the mechanisms underlying AKI and paves the way for developing ferroptosis-based approaches to treat AKI. Glycyrol (GC) is a representative coumarin compound isolated from licorice that demonstrates various pharmacological activities. However, its potential for a protective effect against kidney injury remains unknown. We hypothesized that GC might be able to protect against AKI via suppression of ferroptosis. This hypothesis was tested in a cell-culture model of RSL3-induced nephrocyte ferroptosis and a mouse model of folic acid-induced AKI. The results showed that GC exerted a significant protective effect against nephrocyte ferroptosis in vitro and was effective against folic acid-induced AKI in vivo, where it was mechanistically associated with suppressing HO-1-mediated heme degradation. Collectively, the findings of the present study support the hypothesis that GC holds considerable potential to be developed as a novel agent for treating ferroptosis-related AKI.


Assuntos
Injúria Renal Aguda , Animais , Camundongos , Flavonoides , Técnicas de Cultura de Células , Ácido Fólico
2.
Biomed Chromatogr ; 37(2): e5532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36269043

RESUMO

Licorice (Glycyrrhiza uralensis) is one of the most popular edible and medicinal plants and is widely used in Asia. Glycyrol (GC) is a major coumarin present in licorice that exhibits various biological activities. We aimed to develop a highly sensitive and rapid liquid chromatography coupled with mass spectrometry method for the quantitative determination analysis of GC in rat plasma. GC showed linear calibration ranges of 1-100 and 50-2,000 ng/ml with correlation coefficients >0.99. The average extraction recovery ranged from 113.26 to 114.84%, and the relative standard deviation of internal standard normalized matrix factors ranged from 6.36 to 9.46%. The intra-day and inter-day precisions of GC were <15%, and the accuracy ranged from 95.31 to 112.72%. Pharmacokinetic studies showed that GC was distributed in the body with a volume of distribution of 9.06 L/kg, and the initial plasma concentration was 3275.11 ng/ml. The area under the plasma concentration vs. time curve was 479.25 ng h/ml. It was rapidly eliminated with a terminal elimination half-life of 1.47 h and a clearance rate of 4.24 L/h/kg. The pharmacokinetic results can help us to better understand the pharmacological effects of GC in the body.


Assuntos
Glycyrrhiza , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Flavonoides , Plasma , Reprodutibilidade dos Testes
3.
Xenobiotica ; 50(4): 380-388, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31233374

RESUMO

1. Glycyrol is a coumestan derivative that is isolated from roots of Glycyrrhiza uralensis. Glycyrol exhibits several biological effects, including anti-oxidative and anti-inflammatory effects.2. Herein, we characterized glycyrol metabolism by cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) using human liver microsomes (HLM), human liver cytosol, human intestinal microsomes, or human recombinant cDNA-expressed CYPs and UGTs. The analysis was conducted using high resolution mass spectroscopy (HR-MS) on a Q ExactiveTM HF Hybride Quadrupole-Orbitrap mass spectrometer.3. NADPH-supplemented HLM generated six glycyrol metabolites (M1-M6) via hydroxylation, oxidation, and hydration; both NADPH- and UDPGA-supplemented liver microsomes generated three glucuronides (M7-M9). Reaction phenotyping revealed that CYP1A2 is the primary enzyme responsible for phase I metabolism, with minor involvement of the CYP3A4/5, CYP2D6, and CYP2E1 enzymes. Glucuronidation of glycyrol was primarily mediated by UGT1A1, UGT1A3, UGT1A9, and UGT2B7.4. In conclusion, glycyrol undergoes the efficient metabolic hydroxylation and glucuronidation reactions in human liver microsomes, which are predominantly catalyzed by CYP1A2, UGT1A1/3/9, and UGT2B7.


Assuntos
Flavonoides/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Microssomos/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem , UDP-Glucuronosiltransferase 1A
4.
Molecules ; 25(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859055

RESUMO

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (-7.8 kcal/mol) was greater than its affinity for AChE (-7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (-8.8 kcal/mol) was greater than its affinity for MAO-A (-7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer's disease with multi-targeting activities.


Assuntos
Butirilcolinesterase/química , Inibidores da Colinesterase , Cumarínicos , Flavanonas , Glycyrrhiza uralensis/química , Inibidores da Monoaminoxidase , Monoaminoxidase/química , Animais , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Electrophorus , Flavanonas/química , Flavanonas/isolamento & purificação , Humanos , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/isolamento & purificação
5.
Pharmacol Res ; 147: 104366, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31377221

RESUMO

Molecular targeted therapy for non-small cell lung cancer (NSCLC) has demonstrated promising outcomes. T-lymphokine-activated killer cell-originated protein kinase (TOPK) is found overexpressed in many cancer types such as NSCLC, and is considered to be an effective target for lung cancer treatment. In the present study, we found that glycyrol (GC), a representative coumarin compound isolated from licorice, was highly effective against several human NSCLC cell lines in vitro, and significantly suppressed tumor growth in vivo. Mechanistically, we demonstrated that GC can strongly bind to the TOPK protein and inhibited its kinase activity, leading to the activation of apoptotic signaling pathways. The findings of the present study suggest that GC is a novel promising TOPK inhibitor and this compound deserves to be further investigated for its potential anti-NSCLC activity.


Assuntos
Antineoplásicos/farmacologia , Flavonoides/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Flavonoides/uso terapêutico , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , RNA Interferente Pequeno/genética , Cicatrização/efeitos dos fármacos
6.
Xenobiotica ; 46(10): 857-61, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26750984

RESUMO

1. Glycyrol is a coumarin derivative isolated from the roots of Glycyrrhiza uralensis called Gamcho in Korea and commonly used as a sweetener in oriental medicine. Glycyrol shows several biological activities, including anti-oxidative, anti-inflammatory, antibacterial, anti-angiogenic, and anti-allergenic properties. Although there have been studies on the biological effects of glycyrol, the inhibitory effects of glycyrol on cytochrome P450 (CYP) activities have not been investigated. 2. We investigated the inhibitory effects of glycyrol on the activities of CYP isoforms using a cocktail of probe substrates in pooled human liver microsome (HLM) and human recombinant cDNA-expressed CYPs. Glycyrol strongly inhibited CYP1A-mediated phenacetin O-deethylation and CYP2C9-mediated diclofenac 4'-hydroxylation in HLMs, which were the result of competitive inhibition as revealed by a Dixon plot. In addition, glycyrol showed selective inhibition of CYP1A1- and CYP1A2-catalyzed phenacetin O-deethylase activity with a half-maximal inhibitory concentration of (IC50) 1.3 and 16.1 µM in human recombinant cDNA-expressed CYP1A1 and CYP1A2, respectively. 3. Glycyrol decreased CYP2C9-catalyzed diclofenac 4'-hydroxylation activity with IC50 values of 0.67 µM in human recombinant cDNA-expressed CYP2C9. This is the first investigation of competitive inhibitory effects on CYP1A1 and CYP2C9 in HLMs.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Flavonoides/farmacologia , Humanos , Microssomos Hepáticos/metabolismo , República da Coreia
7.
J Agric Food Chem ; 72(26): 14653-14662, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860840

RESUMO

The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.


Assuntos
Colite Ulcerativa , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mucosa Intestinal , Neuroglia , Proteína da Zônula de Oclusão-1 , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos , Humanos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Camundongos Endogâmicos C57BL , Cumarínicos/farmacologia , Cumarínicos/química , Transdução de Sinais/efeitos dos fármacos , Glycyrrhiza/química
8.
Int Immunopharmacol ; 134: 112245, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749334

RESUMO

Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Biologia Computacional , Medicamentos de Ervas Chinesas , Receptor IGF Tipo 1 , Neoplasias Gástricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Biologia Computacional/métodos , Transdução de Sinais/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Somatomedina/metabolismo , Farmacologia em Rede , Antineoplásicos Fitogênicos/farmacologia
9.
Metabolites ; 12(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36295798

RESUMO

Glycyrrhiza glabra L., known as licorice, is one of the most famous herbs in the world. In this study, we investigated the phytochemical and antitumor activities of G. glabra, especially its anti-colorectal cancer activities. G. glabra was extracted with 70% methanol, and the ethyl acetate layer was separated by silica gel, ODS, LH-20 column chromatography, and semi-preparative HPLC to obtain the compounds. The structures were determined by NMR and MS methods. Three new compounds named licopyranol A-C (1-3), and eighteen known compounds (4-21) were isolated. Compounds with an isoprenyl group or dimethylpyran ring showed better antitumor activities. Licopyranol A (1) and glycyrol (5) both inhibited the proliferation, reduced clone formation and promoted apoptosis of RKO cells. The Western blotting assays showed that glycyrol significantly reduced the expression of E-cadherin, ß-catenin, c-Myc, and GSK-3ß proteins in RKO cells, suggesting that glycyrol may inhibit the growth of colorectal cancer RKO cells via the Wnt/ß-catenin signaling pathway.

10.
Toxicon ; 200: 165-172, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34343521

RESUMO

Fumonisin B1 (FB1) is a major food-borne mycotoxin commonly found in maize and maize-based products, while cadmium is one of the most common toxic heavy metals found in food, particularly in wheat and rice. Given the possibility of co-exposure to FB1 and cadmium for consumers, we elevated combined toxicity of FB1 and cadmium using both in vitro and in vivo models. Acute toxicity setting was employed in the present study. Mouse embryonic fibroblast (MEF) and human L02 liver cells were used to determine the in vitro cytotoxicity, while C57BL/6 N mice were used to assess the in vivo toxicity. Results showed that treatment with combination of FB1 (15, 20, 25, 30, 35 µM) and cadmium (3, 4, 5, 6, 7 µM) for 24 h led to synergistic cytotoxicity in vitro, and acute treatment with the combination of FB1/cadmium (1.5 mg/kg/60 mg/kg) for 5 days increased liver damage in vivo. Mechanistically, the combined toxicity was associated with elevated activation of IRE1α-JNK pathway. Glycyrol, a representative coumarin compound isolated from licorice, was able to reduce the combination-induced toxicity both in vitro and in vivo through suppression of IRE1α-JNK axis. The combined toxicity of FB1/cadmium should be taken into consideration for performing human health risk assessment of FB1/cadmium exposure.


Assuntos
Endorribonucleases , Fumonisinas , Animais , Cádmio/toxicidade , Fibroblastos , Flavonoides , Fumonisinas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases
11.
Food Chem Toxicol ; 136: 110952, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31712101

RESUMO

Coumarin-based anti-cancer agents have attracted considerable attention recently. Butyrate, a major short-chain fatty acid produced in colon by gut microbiota, has been shown to exert anticancer activity both in vitro and in vivo. In this study, we evaluated the anti-cancer effect of combining glycyrol (GC), a representative of coumarin compounds in licorice, or its analogues Glycycoumarin/Demethylsuberosin/Coumestrol (GCM/De/Coum) with butyrate in HT29 and HCT116 cells, and explored the relationship between the combined anti-cancer effect and structural features of coumarin compounds. Results showed the strongest inhibitory effect on cancer cells was induced by GC/butyrate combination via enhanced activation of caspase-3. Our data indicated the benzofuranyl, isopentenyl and methoxy groups presented in GC played critical role in its anti-cancer activity, while the furan group led to the further enhancement. The findings of the present study will be beneficial for developing coumarin-based compounds and coumarin compound-based regimen to fight against colon cancer.


Assuntos
Antineoplásicos/farmacologia , Butiratos/farmacologia , Caspase 3/metabolismo , Flavonoides/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Flavonoides/química , Células HCT116 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Mitocôndrias/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Arch Pharm Res ; 39(10): 1482-1489, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27572154

RESUMO

In this study, we investigated the anti-fungal activity of glycyrol, a coumarine isolated from licorice (Glycyrrhizae Radix), in a murine model of cutaneous candidiasis caused by Candida albicans. Compared to the infected sites, located on the mice's back, of the untreated control mice, the infected sites treated with glycyrol had reduced CFU (colony forming unit) values up to 60 and 85.5 % at 20 and 40 µg/mouse of glycyrol, respectively (P < 0.01). The antifungal activity of glycyrol was synergistically increased when glycyrol (10 µg/mouse) was combined with fluconazole (10 µg/mouse), demonstrating that the combination therapy is approximately 4 times more effective than fluconazole alone at 20 µg/mouse (P < 0.01). Additionally, the combination activity was 1.65 times greater than the antifungal activity of fluconazole alone at 40 µg/mouse (P < 0.05). In seeking glycyrol's antifungal mechanism, we determined that glycyrol inhibited hyphal induction and cell wall adherence of C. albicans. Thus, it is very likely that, by damaging the cell wall, glycyrol helps fluconazole invade C. albicans more readily and attack fluconazole's target in the fungus membrane. In summary, our data indicate that glycyrol may contribute to the development of a novel agent that possesses antifungal activity against cutaneous candidiasis.


Assuntos
Antifúngicos/administração & dosagem , Candida albicans/efeitos dos fármacos , Candidíase Cutânea/tratamento farmacológico , Flavonoides/administração & dosagem , Fluconazol/administração & dosagem , Animais , Parede Celular/efeitos dos fármacos , Parede Celular/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos BALB C
13.
Artigo em Inglês | MEDLINE | ID: mdl-25614969

RESUMO

Coumarins are an important group of bioactive constituents in licorice (Glycyrrhiza uralensis), a worldwide popular herbal medicine. This study aims to elucidate the metabolism of two major licorice coumarins, glycyrin and glycyrol in rats. After oral administration of 40mg/kg glycyrin, neither the parent compound nor its metabolites could be detected in rats plasma or urine samples, indicating that glycyrin had poor oral bioavailability. Two hydroxylated metabolites, 4″-hydroxyl glycyrin and 5″-hydroxyl glycyrin, were detected in rat liver microsome incubation system. Among them, the major metabolite 4″-hydroxyl glycyrin, which is a new compound, was obtained by microbial transformation of Syncephalastrum racemosum AS 3.264. Its structure was fully identified by 1D and 2D NMR. Meanwhile, glycyrol, together with three metabolites, were detected in rats urine and fecal samples after oral administration (40mg/kg). Their structures were tentatively characterized by LC/MS. Glycyrol mainly undertakes hydroxylation metabolism, accompanied by hydration and dehydrogenation as minor reactions. This is the first systematic study on metabolism of glycyrin and glycyrol. The results could be valuable to evaluate druggability of these bioactive natural products.


Assuntos
Cumarínicos/metabolismo , Flavonoides/metabolismo , Glycyrrhiza/química , Metaboloma , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Cumarínicos/química , Flavonoides/química , Masculino , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA