Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
2.
Cell ; 180(1): 50-63.e12, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923399

RESUMO

Mucosal barrier immunity is essential for the maintenance of the commensal microflora and combating invasive bacterial infection. Although immune and epithelial cells are thought to be the canonical orchestrators of this complex equilibrium, here, we show that the enteric nervous system (ENS) plays an essential and non-redundant role in governing the antimicrobial protein (AMP) response. Using confocal microscopy and single-molecule fluorescence in situ mRNA hybridization (smFISH) studies, we observed that intestinal neurons produce the pleiotropic cytokine IL-18. Strikingly, deletion of IL-18 from the enteric neurons alone, but not immune or epithelial cells, rendered mice susceptible to invasive Salmonella typhimurium (S.t.) infection. Mechanistically, unbiased RNA sequencing and single-cell sequencing revealed that enteric neuronal IL-18 is specifically required for homeostatic goblet cell AMP production. Together, we show that neuron-derived IL-18 signaling controls tissue-wide intestinal immunity and has profound consequences on the mucosal barrier and invasive bacterial killing.


Assuntos
Imunidade nas Mucosas/imunologia , Interleucina-18/imunologia , Mucosa Intestinal/imunologia , Animais , Citocinas/imunologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/imunologia , Feminino , Células Caliciformes/imunologia , Interleucina-18/biossíntese , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/imunologia , Ratos , Ratos Sprague-Dawley , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia
3.
Immunity ; 55(4): 623-638.e5, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385697

RESUMO

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Assuntos
Alarminas , Mucosa Intestinal , Acilação , Alarminas/imunologia , Anti-Helmínticos/imunologia , Biomarcadores Tumorais , Citocinas , Proteínas de Ligação a DNA , Helmintíase/imunologia , Humanos , Hiperplasia , Inflamação , Interleucina-33 , Mucosa Intestinal/imunologia , Mebendazol , N-Acetilglucosaminiltransferases/imunologia , Proteínas Citotóxicas Formadoras de Poros , Fator de Transcrição STAT6/imunologia
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
5.
Respir Res ; 25(1): 120, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468259

RESUMO

BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Interleucina-8/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologia
6.
Br J Nutr ; 131(6): 987-996, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37955051

RESUMO

Macauba (Acrocomia aculeata) is a palm tree native from Brazil, whose pulp is rich in oil that has a high content of oleic acid and carotenoids. Macauba pulp oil can bring health benefits due to its bioactive compounds; however, its effects on gut health are unknown. Thus, the objective of this study was to evaluate the effect of macauba pulp oil on the intestinal health in mice fed a high-fat (HF) diet. Male C57BL1/6 mice were randomly divided into three groups (10 animals/group): control diet, HF diet and HF diet with 4 % of macauba pulp oil (HFM). Concentration of short-chain fatty acids (SCFA), faecal pH and histomorphometric analysis of the colon were performed. Content of colon samples was used on microbiome analysis using 16S rRNA amplicon sequencing. Animals from the HFM group had higher butyric acid content and goblet cells number, greater circular and longitudinal muscle layer and higher α-diversity compared with the HF group. Moreover, consumption of MPO reduced Desulfobacterota phylum, Ruminococcaceae, Oscillospiraceae, Prevotellaceae, Bifidobacteriaceae family, Faecalibacterium, Prevotella, Ruminococcus and Enterorhabdus genus. Therefore, macauba pulp oil was able to modulate the gut microbiota and enhance intestinal barrier morphology, showing preventive effects on gut dysbiosis in mice fed a HF diet.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Células Caliciformes , RNA Ribossômico 16S , Proliferação de Células , Camundongos Endogâmicos C57BL
7.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677782

RESUMO

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Caliciformes , Interleucina-13 , Medicina Kampo , Metaplasia , Mucina-5AC , Muco , Animais , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Interleucina-13/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cobaias , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Cultivadas , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Masculino , Expressão Gênica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos , Traqueia/citologia , Traqueia/efeitos dos fármacos , Traqueia/patologia , Traqueia/metabolismo
8.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759536

RESUMO

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Assuntos
Cromo , Colo , Mucina-2 , Níquel , Animais , Cromo/toxicidade , Níquel/toxicidade , Camundongos , Colo/efeitos dos fármacos , Colo/patologia , Mucina-2/genética , Mucina-2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Perfilação da Expressão Gênica , Masculino , Digestão/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Transcriptoma/efeitos dos fármacos , Ocludina/metabolismo , Ocludina/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
9.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612809

RESUMO

Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.


Assuntos
Corioamnionite , Infecções por Ureaplasma , Gravidez , Ovinos , Animais , Humanos , Feminino , Recém-Nascido , Infecções por Ureaplasma/complicações , Intestinos , Causalidade , Muco
10.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928356

RESUMO

The topology of the basement membrane (BM) affects cell physiology and pathology, and BM thickening is associated with various chronic lung diseases. In addition, the topology of commercially available poly (ethylene terephthalate) (PET) membranes, which are used in preclinical in vitro models, differs from that of the human BM, which has a fibrous and elastic structure. In this study, we verified the effect of BM thickness on the differentiation of normal human bronchial epithelial (NHBE) cells. To evaluate whether the thickness of poly-ε-carprolactone (PCL) mesh affects the differentiation of NHBE cells, cells were grown on thin- (6-layer) and thick-layer (80-layer) meshes consisting of electrospun PCL nanofibers using an air-liquid interface (ALI) cell culture system. It was found that the NHBE cells formed a normal pseudostratified epithelium composed of ciliated, goblet, and basal cells on the thin-layer PCL mesh; however, goblet cell hyperplasia was observed on the thick-layer PCL mesh. Differentiated NHBE cells cultured on the thick-layer PCL mesh also demonstrated increased epithelial-mesenchymal transition (EMT) compared to those cultured on the thin-layer PCL mesh. In addition, expression of Sox9, nuclear factor (NF)-κB, and oxidative stress-related markers, which are also associated with goblet cell hyperplasia, was increased in the differentiated NHBE cells cultured on the thick-layer PCL mesh. Thus, the use of thick electrospun PCL mesh led to NHBE cells differentiating into hyperplastic goblet cells via EMT and the oxidative stress-related signaling pathway. Therefore, the topology of the BM, for example, thickness, may affect the differentiation direction of human bronchial epithelial cells.


Assuntos
Membrana Basal , Diferenciação Celular , Células Epiteliais , Poliésteres , Humanos , Poliésteres/química , Membrana Basal/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Nanofibras/química , Células Cultivadas , Brônquios/citologia , Brônquios/metabolismo
11.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397081

RESUMO

We previously reported that an aryl hydrocarbon receptor (AhR) ligand, indole-3-carbinol (I3C), was effective at reducing colitis severity through immune cell-mediated interleukin-22 (IL-22) production. Intestinal epithelial cells (IECs) are also involved in regulating colitis, so we investigated their AhR-mediated mechanisms in the current report. A transcriptome analysis of IECs in wildtype (WT) mice revealed that during colitis, I3C regulated select mucin proteins, which could be attributed to goblet cell development. To address this, experiments under in vivo colitis (mice) or in vitro colon organoid conditions were undertaken to determine how select mucin proteins were altered in the absence or presence of AhR in IECs during I3C treatment. Comparing WT to IEC-specific AhR knockout mice (AhRΔIEC), the results showed that AhR expression was essential in IECs for I3C-mediated protection during colitis. AhR-deficiency also impaired mucin protein expression, particularly mucin 2 (Muc2), independently of IL-22. Collectively, this report highlights the important role of AhR in direct regulation of Muc2. These results provide justification for future studies aimed at determining how AhR might regulate select mucins through mechanisms such as direct transcription binding to enhance production.


Assuntos
Colite , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Mucina-2/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucina 22 , Colite/genética , Mucinas/genética , Camundongos Endogâmicos C57BL
12.
J Infect Dis ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698016

RESUMO

BACKGROUND: Chronic pulmonary conditions such as asthma and COPD increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS: We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine IL-13, examining how this impacted DPP4 protein levels along with MERS-CoV entry and replication. RESULTS: IL-13 exposure for 3 days led to increased DPP4 protein abundance, while a 21-day treatment increased DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly impacted by IL-13 treatment. CONCLUSIONS: Our results suggest that increased DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13 induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.

13.
Immunology ; 170(1): 1-12, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37067238

RESUMO

Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.


Assuntos
Colite , Células Caliciformes , Humanos , Sistema Imunitário , Imunidade nas Mucosas , Transporte Biológico
14.
Allergy ; 78(8): 2266-2276, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36934403

RESUMO

BACKGROUND: Dupilumab-associated ocular surface disease (DAOSD) is frequently reported as side effect in atopic dermatitis (AD) patients. Therefore, the aim of this study was to investigate the frequency and severity of DAOSD, ophthalmic treatment response and to learn more about the effect of dupilumab on conjunctival goblet cells (GC). METHODS: This prospective study included dupilumab-treated AD patients between February 2020 and June 2022 from the University Medical Centre Utrecht. Patients were examined by an ophthalmologist and a dermatologist before start (baseline), and after 4 and 28 weeks of dupilumab treatment. Ophthalmological examination was assessed by the Utrecht Ophthalmic Inflammatory and Allergic disease (UTOPIA) score. DAOSD was defined as an increase in UTOPIA score of ≥3 points from baseline. To quantify conjunctival GCs and to investigate the percentage of Cytokeratin 19 (CK19)-CD45-Mucin 5 AC (MUC5AC)+ cells, conjunctival impression cytology samples were analysed. RESULTS: Ocular surface disease (OSD) was present in 91.3% (n = 63/69) patients at baseline. DAOSD was observed in 28.9% (n = 20/69) patients, in whom GC numbers remained stable and the percentage of CK19-CD45-MUC5AC+ cells decreased at onset of DAOSD compared with baseline. After 28 weeks of dupilumab treatment, DAOSD was seen in 14.5% (n = 10/69) patients. Of the 85.5% (n = 59/69) patients without DAOSD or with controlled DAOSD at Week 28, 40.7% (n = 24/59) patients received anti-inflammatory ophthalmic drugs. CONCLUSIONS: Ocular surface disease is common in moderate-to-severe AD patients before starting dupilumab. During treatment with dupilumab DAOSD severity improves with early ophthalmic treatment. The decrease in percentage of CK19-CD45-MUC5AC+ cells during dupilumab treatment suggests an impairment of the GC function due to dupilumab treatment.


Assuntos
Dermatite Atópica , Oftalmopatias , Hipersensibilidade , Humanos , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Células Caliciformes , Estudos Prospectivos , Anticorpos Monoclonais Humanizados/efeitos adversos , Resultado do Tratamento , Índice de Gravidade de Doença
15.
Int Arch Allergy Immunol ; 184(7): 707-719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36822170

RESUMO

INTRODUCTION: Respiratory viral infection in childhood is closely associated with asthmatic attacks. Of all predisposing factors, viral infection is the primary contributor to acute childhood asthma exacerbations. However, the mechanisms involved in viral asthma are unclear. This study attempted to provide insights into molecular mechanisms in respiratory virus-induced acute asthma exacerbations. METHODS: House dust mite (HDM) was given by intranasal administration to induce asthma in mice. Poly(I:C) was used to mimic the viral infection. A selective YAP inhibitor, verteporfin (VP), was used to investigate the role of the YAP/FOXM1 pathway. The expression of YAP, FOXM1, cytokines, and inflammatory cells in lung tissue, and bronchoalveolar lavage fluid (BALF) was determined using RT-PCR, immunohistochemical, ELISA, and flow cytometry studies. The methacholine challenge assesses airway hyperresponsiveness. In 16HBE cell experiments, we selectively inhibited YAP and FOXM1 by VP and RCM1, respectively, and detected the expression of YAP and FOXM1. RESULTS: The experimental studies have confirmed the YAP/FOXM1 pathway plays a vital role in the differentiation and proliferation of airway club cells into goblet cells and lung inflammation. Poly(I:C) upregulated the expression of FOXM1 by activating transcription factor YAP in mice airway epithelial cells and then promoted the expression of downstream transcription factors SPDEF/MUC5AC, resulting in airway mucus hypersecretion and hyperresponsiveness. In addition, Poly(I:C) facilitates the expression of inflammatory factors in lung tissue. All of these events induce asthma exacerbations. The in vitro studies have confirmed that YAP positively regulates FOXM1 in airway epithelial cells. CONCLUSION: Poly(I:C) promotes airway epithelial goblet cell hyperplasia, mucus hypersecretion, and airway hyperresponsiveness. It also upregulates the expression of inflammatory factors in lung tissue and BALF in asthmatic mice by the YAP/FOXM1 pathway, resulting in asthma attacks.


Assuntos
Asma , Pneumonia , Animais , Camundongos , Células Caliciformes/patologia , Camundongos Endogâmicos BALB C , Hiperplasia/patologia , Pulmão/patologia , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Fatores de Transcrição , Pyroglyphidae , Modelos Animais de Doenças , Inflamação/patologia
16.
Parasite Immunol ; 45(6): e12981, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038837

RESUMO

Schistosomiasis affects nearly 240 million people in predominately low- and middle-income countries and ranks second in the number of cases and socio-economic burden among all parasitic diseases. Despite the enormous burden posed by schistosomes, our understanding of how schistosomiasis impacts infected human tissues remains limited. Intestinal schistosomiasis in animal models leads to goblet cell hyperplasia, likely increasing mucus production and reflecting an intestinal type 2 immune response. However, it is unknown whether these same changes occur in schistosome-infected humans. Using immunofluorescence and light microscopy, we compared the abundance and morphology of goblet cells in patients diagnosed with schistosomiasis to uninfected controls. The mucin-containing vesicles in goblet cells from schistosome-infected patients were significantly larger (hypertrophic) than uninfected individuals, although goblet cell hyperplasia was absent in chronic human schistosomiasis. In addition, we examined tuft cells in the large intestinal epithelium of control and schistosome-infected patients. Tuft cell numbers expand during helminth infection in mice, but these cells have not been characterized in human parasite infections. We found no evidence of tuft cell hyperplasia during human schistosome infection. Thus, our study provides novel insight into schistosome-associated changes to the intestinal epithelium in humans, suggesting an increase in mucus production by large intestinal goblet cells but relatively minor effects on tuft cell numbers.


Assuntos
Esquistossomose , Humanos , Animais , Camundongos , Hiperplasia/metabolismo , Hiperplasia/patologia , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucinas/metabolismo
17.
J Gastroenterol Hepatol ; 38(8): 1346-1354, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37157108

RESUMO

BACKGROUND AND AIM: Bifidobacterium breve was the first bacteria isolated in the feces of healthy infants and is a dominant species in the guts of breast-fed infants. Some strains of B. breve have been shown to be effective at relieving intestinal inflammation, but the modes of action have yet to be elucidated. In this study, we investigated the mechanisms of action of B. breve CBT BR3 isolated from South Korean infant feces in relieving colitis in vitro and in vivo. METHODS: Colitis was induced in mice with dextran sodium sulfate (DSS) and dinitrobenzene sulfonic acid (DNBS). Quantitative reverse-transcription polymerase chain reaction, in vitro FITC-dextran flux permeability assay, and aryl hydrocarbon receptor (AhR) luciferase assay are performed using Caco-2 cells and HT29-Lucia™ AhR cells. RESULTS: B. breve CBT BR3 was orally administered. B. breve CBT BR3 improved colitis symptoms in both DSS- and DNBS-induced colitis models. B. breve CBT BR3 increased the number of goblet cells per crypt. B. breve increased the mRNA expressions of Notch, Spdef, Muc5, and Il22. The mRNA expressions of Occludin, which encodes a membrane tight-junction protein, and Foxo3, which encodes a protein related to butyrate metabolism, were also increased in the DSS- and DNBS-induced colitis models. B. breve CBT BR3 protected inflammation-induced epithelial cell permeability and improved goblet cell function by inducing aryl hydrocarbon receptor in vitro. CONCLUSIONS: These results indicate that B. breve CBT BR3 is effective at relieving intestinal inflammation by augmenting goblet cell regeneration.


Assuntos
Bifidobacterium breve , Colite , Humanos , Animais , Camundongos , Células Caliciformes/metabolismo , Bifidobacterium breve/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células CACO-2 , Colite/induzido quimicamente , Colite/terapia , Colite/metabolismo , Inflamação/terapia , Inflamação/metabolismo , RNA Mensageiro/genética , Regeneração , Sulfato de Dextrana , Mucosa Intestinal , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
18.
Respirology ; 28(2): 132-142, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414410

RESUMO

BACKGROUND AND OBJECTIVE: Smoking disturbs the bronchial-mucus-barrier. This study assesses the cellular composition and gene expression shifts of the bronchial-mucus-barrier with smoking to understand the mechanism of mucosal damage by cigarette smoke exposure. We explore whether single-cell-RNA-sequencing (scRNA-seq) based cellular deconvolution (CD) can predict cell-type composition in RNA-seq data. METHODS: RNA-seq data of bronchial biopsies from three cohorts were analysed using CD. The cohorts included 56 participants with chronic obstructive pulmonary disease [COPD] (38 smokers; 18 ex-smokers), 77 participants without COPD (40 never-smokers; 37 smokers) and 16 participants who stopped smoking for 1 year (11 COPD and 5 non-COPD-smokers). Differential gene expression was used to investigate gene expression shifts. The CD-derived goblet cell ratios were validated by correlating with staining-derived goblet cell ratios from the COPD cohort. Statistics were done in the R software (false discovery rate p-value < 0.05). RESULTS: Both CD methods indicate a shift in bronchial-mucus-barrier cell composition towards goblet cells in COPD and non-COPD-smokers compared to ex- and never-smokers. It shows that the effect was reversible within a year of smoking cessation. A reduction of ciliated and basal cells was observed with current smoking, which resolved following smoking cessation. The expression of mucin and sodium channel (ENaC) genes, but not chloride channel genes, were altered in COPD and current smokers compared to never smokers or ex-smokers. The goblet cell-derived staining scores correlate with CD-derived goblet cell ratios. CONCLUSION: Smoking alters bronchial-mucus-barrier cell composition, transcriptome and increases mucus production. This effect is partly reversible within a year of smoking cessation. CD methodology can predict goblet-cell percentages from RNA-seq.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Transcriptoma/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Muco/metabolismo , Biópsia , Fumar/efeitos adversos , Fumar/genética
19.
Langenbecks Arch Surg ; 408(1): 65, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695921

RESUMO

PURPOSE: The aim is to clarify the use of perioperative chemotherapy in resectable goblet cell carcinoma (GCC). METHODS: A retrospective study was carried out based on the Surveillance, Epidemiology, and End Results study. The population was divided: into patients who received only radical surgery (group A) and those who received radical surgery plus chemotherapy (group B). An entropy balancing was carried out to correct the imbalance between the two groups. Two models were generated. Model 1 contained only high-risk patients: group B and a "virtual" group A with similar characteristics. Model 2 included only low-risk patients: group A and "virtual" group B with identical attributes. The efficacy of entropy balancing was evaluated with the d value. The overall survival was compared and reported with Hazard Ratio (HR) within a confidence interval of 95% (95 CI). RESULTS: The groups A and B were imbalanced for tumor size (d = 0.392), T (d = 1.128), N (d = 1.340), M (d = 1.456), mean number of positive lymph nodes (d = 0.907), and LNR (d = 0.889). Before the balancing, the risk of death was higher in group B than in A (4.3; 2.5 to 7.4). After reweighting, all large differences were eliminated (d < 0.200). In high-risk patients, the risk of death was higher in patients who underwent surgery alone than those who received perioperative chemotherapy (HR 0.5; 0.2 to 1.3) without statistical significance (p = 0.187). In low-risk patients, the risk of death was similar (HR 1.1; 0.3 to 3.3). CONCLUSION: Perioperative chemotherapy could provide some marginal advantages to high-risk patients.


Assuntos
Carcinoma , Células Caliciformes , Humanos , Estudos Retrospectivos , Entropia , Carcinoma/cirurgia , Modelos de Riscos Proporcionais
20.
Proc Natl Acad Sci U S A ; 117(35): 21519-21526, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817517

RESUMO

The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/microbiologia , Indóis/farmacologia , Interleucina-10/metabolismo , Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Envelhecimento/metabolismo , Animais , Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Interleucina-10/biossíntese , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/metabolismo , Transdução de Sinais , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA