RESUMO
It has always been a major issue for a hospital to acquire real-time information about a patient in emergency situations. Because of this, this research presents a novel high-compression-ratio and real-time-process image compression very-large-scale integration (VLSI) design for image sensors in the Internet of Things (IoT). The design consists of a YEF transform, color sampling, block truncation coding (BTC), threshold optimization, sub-sampling, prediction, quantization, and Golomb-Rice coding. By using machine learning, different BTC parameters are trained to achieve the optimal solution given the parameters. Two optimal reconstruction values and bitmaps for each 4 × 4 block are achieved. An image is divided into 4 × 4 blocks by BTC for numerical conversion and removing inter-pixel redundancy. The sub-sampling, prediction, and quantization steps are performed to reduce redundant information. Finally, the value with a high probability will be coded using Golomb-Rice coding. The proposed algorithm has a higher compression ratio than traditional BTC-based image compression algorithms. Moreover, this research also proposes a real-time image compression chip design based on low-complexity and pipelined architecture by using TSMC 0.18 µm CMOS technology. The operating frequency of the chip can achieve 100 MHz. The core area and the number of logic gates are 598,880 µm2 and 56.3 K, respectively. In addition, this design achieves 50 frames per second, which is suitable for real-time CMOS image sensor compression.
RESUMO
This article deals with compression of binary sequences with a given number of ones, which can also be considered as a list of indexes of a given length. The first part of the article shows that the entropy H of random n-element binary sequences with exactly k elements equal one satisfies the inequalities klog2(0.48·n/k)
RESUMO
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.
RESUMO
In this paper, we propose a lossless electrocardiogram (ECG) compression method using a prediction error-based adaptive linear prediction technique. This method combines the adaptive linear prediction, which minimizes the prediction error in the ECG signal prediction, and the modified Golomb-Rice coding, which encodes the prediction error to the binary code as the compressed data. We used the PTB Diagnostic ECG database, the European ST-T database, and the MIT-BIH Arrhythmia database for the evaluation and achieved the average compression ratios for single-lead ECG signals of 3.16, 3.75, and 3.52, respectively, despite different signal acquisition setup in each database. As the prediction order is very crucial for this particular problem, we also investigate the validity of the popular linear prediction coefficients that are generally used in ECG compression by determining the prediction coefficients from the three databases using the autocorrelation method. The findings are in agreement with the previous works in that the second-order linear prediction is suitable for the ECG compression application.