Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202313298, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37795962

RESUMO

Peroxymonosulfate (PMS) mediated radical and nonradical active substances can synergistically achieve the efficient elimination of antibiotic resistance genes (ARGs). However, enhancing interface electron cycling and optimizing the coupling of the oxygen-containing intermediates to improve PMS activation kinetics remains a major challenge. Here, Co doped CeVO4 catalyst (Co-CVO) with asymmetric sites was constructed based on Ce 4f-O 2p-Co 3d gradient orbital coupling. The catalyst achieved approximately 2.51×105 copies/mL of extracellular ARGs (eARGs) removal within 15 minutes, exhibited ultrahigh degradation rate (k=1.24 min-1 ). The effective gradient 4f-2p-3d orbital coupling precisely regulates the electron distribution of Ce-O-Co active center microenvironment, while optimizing the electronic structure of Co 3d states (especially the occupancy of eg ), promoting the adsorption of oxygen-containing intermediates. The generated radical and nonradical generated by interfacial electron cycling enhanced by the reduction reaction of PMS at the Ce site and the oxidation reaction at the Co site achieved a significant mineralization rate of ARGs (83.4 %). The efficient removal of ARGs by a continuous flow reactor for 10 hours significantly reduces the ecological risk of ARGs in actual wastewater treatment.


Assuntos
Antibacterianos , Peróxidos , Antibacterianos/farmacologia , Peróxidos/química , Oxirredução , Resistência Microbiana a Medicamentos , Oxigênio
2.
Small Methods ; 7(7): e2300100, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029579

RESUMO

Alkaline oxygen reduction reaction (ORR) is critical to electrochemical energy conversion technology, yet the rational breaking of thermodynamic inhibition for ORR through spin regulation remains a challenge. Herein, a Mott-Schottky catalyst consisting of Er2 O3 -Co particles uniformly implanted into carbon nanofibers (Er2 O3 -Co/CNF) is designed for enhancing ORR via spin-selective coupling. The optimized Er2 O3 -Co/CNF affords a high half-wave potential (0.835 V vs reversible hydrogen electrode, RHE) and onset potential (0.989 VRHE ) for the ORR surpassing individual Co/CNF and Er2 O3 /CNF. Theoretical calculations reveal the introduction of Er2 O3 optimizes the electronic structure of Co through Er(4f)-O(2p)-Co(3d) gradient orbital coupling, resulting in significantly enhanced ORR performance. Through gradient orbital coupling, the induced spin-up hole in Co 3d states endows the Er-O-Co unit active site with a spin-selective coupling channel for electron transition. This favors the decrease of the energy gap in the potential-limiting step, thus achieving a high theoretical limiting potential of 0.77 VRHE for the Er2 O3 -Co. Moreover, the potential practicability of Er2 O3 -Co/CNF as an air-cathode is also demonstrated in Zn-air batteries. This work is believed to provide, new perspectives for the design of efficient ORR electrocatalysts by engineering spin-selective coupling induced by rare-earth oxides.

3.
Adv Mater ; 35(30): e2302462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070755

RESUMO

Rare-earth (RE)-based transition metal oxides (TMO) are emerging as a frontier toward the oxygen evolution reaction (OER), yet the knowledge regarding their electrocatalytic mechanism and active sites is very limited. In this work, atomically dispersed Ce on CoO is successfully designed and synthesized by an effective plasma (P)-assisted strategy as a model (P-Ce SAs@CoO) to investigate the origin of OER performance in RE-TMO systems. The P-Ce SAs@CoO exhibits favorable performance with an overpotential of only 261 mV at 10 mA cm-2 and robust electrochemical stability, superior to individual CoO. X-ray absorption spectroscopy and in situ electrochemical Raman spectroscopy reveal that the Ce-induced electron redistribution inhibits CoO bond breakage in the CoOCe unit site. Theoretical analysis demonstrates that the gradient orbital coupling reinforces the CoO covalency of the Ce(4f)─O(2p)─Co(3d) unit active site with an optimized Co-3d-eg occupancy, which can balance the adsorption strength of intermediates and in turn reach the apex of the theoretical OER maximum, in excellent agreement with experimental observations. It is believed that the establishment of this Ce-CoO model can set a basis for the mechanistic understanding and structural design of high-performance RE-TMO catalysts.

4.
Adv Mater ; 34(42): e2206540, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085436

RESUMO

The development of highly efficient and economical materials for the oxygen reduction reaction (ORR) plays a key role in practical energy conversion technologies. However, the intrinsic scaling relations exert thermodynamic inhibition on realizing highly active ORR electrocatalysts. Herein, a novel and feasible gradient orbital coupling strategy for tuning the ORR performance through the construction of Co 3d-O 2p-Eu 4f unit sites on the Eu2 O3 -Co model is proposed. Through the gradient orbital coupling, the pristine ionic property between Eu and O atoms is assigned with increased covalency, which optimizes the eg occupancy of Co sites, and weakens the OO bond, thus ultimately breaking the scaling relation between *OOH and *OH at Co-O-Eu unit sites. The optimized model catalyst displays onset and half-wave potential of 1.007 and 0.887 V versus reversible hydrogen electrode, respectively, which are higher than those of commercial Pt/C and most Co-based catalysts ever reported. In addition, the catalyst is found to possess superior selectivity and durability. It also reveals better cell performance than commercial noble-metal catalysts in Zn-air batteries in terms of high power/energy densities and long cycle life. This study provides a new perspective for electronic modulation strategy by the construction of gradient 3d-2p-4f orbital coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA