RESUMO
It is crucial to accurately and rapidly monitor the levodopa (LD) concentration for accurate classification and treatment of dyskinesia in Parkinson's disease. In this paper, 3D graphene foam (GF) with a highly conductive network is obtained by chemical vapor deposition. 3D GF serves as the substrate for hydrothermal in situ growth of tapered cross-linked ZnO nanowire bundle arrays (ZnO NWBAs), enabling the development of a highly sensitive detection platform for LD. The formation mechanism of a tapered cross-linked ZnO nanowire bundle arrays on 3D GF is put forward. The integration of 3D GF and ZnO NWBAs can accelerate the electron transfer rate and increase the contact area with biomolecules, resulting in high electrochemical properties. The electrode composed of ZnO NWBAs on 3D GF exhibits significant sensitivity (1.66 µA·µM-1·cm-2) for LD detection in the concentration range 0-60 µM. The electrode is able to rapidly and specifically determine LD in mixed AA or UA solution. The selectivity mechanism of the electrode is also explained by the bandgap model. Furthermore, the successful detection of LD in serum demonstrates the practicality of the electrode and its great potential for clinical application.
Assuntos
Técnicas Eletroquímicas , Grafite , Levodopa , Limite de Detecção , Nanofios , Óxido de Zinco , Grafite/química , Óxido de Zinco/química , Nanofios/química , Levodopa/sangue , Levodopa/análise , Levodopa/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , HumanosRESUMO
A natural stress response induces elevated cortisol levels in biological fluids, such as saliva. While current sensor technologies can detect cortisol in real time, their sensitivity and reliability for human subjects have not been assured. This is due to relatively low concentrations of salivary cortisol, which fluctuate throughout the day and vary significantly between individuals. To address these challenges, we present an improved electrochemical biosensor leveraging graphene's exceptional conductivity and physicochemical properties. A 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE-NHS)-modified commercial graphene foam (GF) electrode is presented to realize an ultra-sensitive biosensor for cortisol detection directly in human saliva. The biosensor fabrication process entails the attachment of anti-cortisol monoclonal antibodies (mAb-cort) onto a PBASE-NHS/GF electrode through noncovalent immobilization on the vertically stratified graphene foam electrode surface. This unique immobilization strategy preserves graphene's structural integrity and electrical conductivity while facilitating antibody immobilization. The binding of cortisol to immobilized mAb-cort is read out via differential pulse voltammetry using ferri/ferro redox reactions. The immunosensor demonstrates an exceptional dynamic range of 1.0 fg mL-1 to 10,000 pg mL-1 (R2 = 0.9914) with a detection limit of 0.24 fg mL-1 (n = 3) for cortisol. Furthermore, we have established the reliability of cortisol sensors in monitoring human saliva. We have also performed multiple modes of validation, one against the established enzyme-linked immunosorbent assay (ELISA) and a second by a third-party service Salimetric on 16 student volunteers exposed to different stress levels, showing excellent correlation (r = 0.9961). These findings suggest the potential for using mAb-cort/PBASE-NHS/GF-based cortisol electrodes for monitoring salivary cortisol in the general population.
Assuntos
Técnicas Biossensoriais , Grafite , Pirenos , Humanos , Hidrocortisona , Imunoensaio , Reprodutibilidade dos Testes , ÉsteresRESUMO
Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS2), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., In2O3/Cr2O3). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS2, CuO, and Ag/ZnO to NO2, H2S, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.
RESUMO
Flexible intelligent materials are desired to effectively regulate their own deformation and accurately sense their immediate morphology at the same time. Graphene foam is an attractive material for strain sensing and electrical/thermal performance control due to its outstanding mechanical, electrical, and thermal properties. However, graphene-foam-based materials with both strain sensing and deformation control capabilities are rarely reported. Here, a multiscale design of graphene foam with a single-layer-graphene-dominated microstructure and resilient 3D network architecture, which leads to exceptional strain sensing performance as well as modulation ability of the electrical and thermal conductivity for shape memory polymers, is reported. The graphene foams exhibit a strain detection limit of 0.033%, a rapid response of 53 ms, long-term stability over 10 000 cycles, significant thermoacoustic effect, and great heat-generation and heat-diffusion ability. By combining these advantages, an electro-activated shape-memory composite that is capable of monitoring its own shape state during its morphing process, is demonstrated.
RESUMO
The effective dissipation of heat from electronic devices is essential to enable their long-term operation and their further miniaturization. Graphene foams (GF) and carbon nanotube (CNT) forests are promising materials for thermal applications, including heat dissipation, due to their excellent thermal conduction and low thermal interface resistance. Here, we study the heat transfer characteristics of these two materials under forced convection. We applied controlled airflow to heated samples of GF and CNT forests while recording their temperature using infrared micro-thermography. Then, we analyzed the samples using finite-element simulations in conjunction with a genetic optimization algorithm, and we extracted their heat fluxes in both the horizontal and vertical directions. We found that boundary layers have a profound impact on the heat transfer characteristics of our samples, as they reduce the heat transfer in the horizontal direction. The heat transfer in the vertical direction, on the other hand, is dominated by the material conduction and is much higher than the horizontal heat transfer. Accordingly, we uncover the fundamental thermal behavior of GF and CNT forests, paving the way toward their successful integration into thermal applications, including cooling devices.
RESUMO
A new method of hydrogen generation from water, by irradiation with CW infrared laser diode of graphene scaffold immersed in solution, is reported. Hydrogen production was extremely efficient upon admixing NaCl into water. The efficiency of hydrogen production increased exponentially with laser power. It was shown that hydrogen production was highly efficient when the intense white light emission induced by laser irradiation of graphene foam was occurring. The mechanism of laser-induced dissociation of water is discussed. It was found that hydrogen production was extremely high, at about 80%, and assisted by a small emission of O2, CO and CO2 gases.
RESUMO
In this review, we highlight recent advancements in 3D graphene foam synthesis by template-assisted chemical vapor deposition, as well as their potential energy storage and conversion applications. This method offers good control of the number of graphene layers and porosity, as well as continuous connection of the graphene sheets. The review covers all the substrate types, catalysts, and precursors used to synthesize 3D graphene by the CVD method, as well as their most viable energy-related applications.
RESUMO
Many experiments have shown that carbon nanotube-coated (CNT-coated) graphene foam (CCGF) has specific mechanical properties, which further expand the application of graphene foam materials in many advanced fields. To reveal the microscopic deformation mechanism of CCGF under uniaxial compression and the main factors affecting their mechanical properties, numerical experiments based on the coarse-grained molecular dynamics method are systematically carried out in this paper. It is found that the relative stiffness of CNTs and graphene flakes seriously affects the microscopic deformation mechanism and strain distribution in CCGFs. The bar reinforcing mechanism will dominate the microstructural deformation in CCGFs composed of relatively soft graphene flakes, while the microstructural deformation in those composed of stiff graphene flakes will be dominated by the mechanical locking mechanism. The effects of CNT fraction, distribution of CNTs on graphene flakes, the thickness of graphene flakes, and the adhesion strength between CNTs and graphene flakes on the initial and intermediate moduli of foam materials are further studied in detail. The results of this paper should be helpful for a deep understanding of the mechanical properties of CCGF materials and the optimization design of microstructures in advanced graphene-based composites.
RESUMO
The development of advanced electrode materials derived from biomass for the next generation of energy storage devices, such as supercapacitors with high specific energy and specific power coupled with a good cycle stability, is required to meet the high demand for electric vehicles and portable devices. In this study, sustainable binary vanadium pentoxide carbon-graphene foam composites (V2O5@C-R2HS/GF) were synthesized using a solvothermal method. The X-ray diffraction, Raman and FTIR techniques were used to study the structural properties of the composites (V2O5@C-R2HS/20 mg GF and V2O5@C-R2HS/40 mg GF). The SEM micrographs displayed an accordion-like morphology resulting from the graphene foam-modified V2O5@C-R2HS composite. The V2O5@C-R2HS, V2O5@C-R2HS/20 mg GF and V2O5@C-R2HS/40 mg GF composites were evaluated in a three-electrode configuration using 6 M potassium hydroxide (KOH) as an aqueous electrolyte. Furthermore, a two-electrode device was carried out by fabricating an asymmetric device (V2O5@C-R2HS/GF//AC) where V2O5@C-R2HS/20 mg GF was used as a positive electrode and activated carbon (AC) as a negative electrode at a cell voltage of 1.6 V in 6 M KOH. The V2O5@C-R2HS/GF//AC showed a high specific energy and specific power values of 55 W h kg-1 and 707 W kg-1, respectively, at a specific current of 1 A g-1. The asymmetric device presented a good stability test showing 99% capacity retention up to 10 000 cycles and was confirmed by the floating time up to 150 h with specific energy increasing 23.6% after the first 10 h. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.
RESUMO
High-pressure resistant and multidirectional compressible materials enable various applications but are often hindered by structure-derived collapse and weak elasticity. Here, a super-robust graphene foam with ladder shape microstructure capable of withstanding high pressure is presented. The multioriented ladder arrays architecture of the foam, consisting of thousands of identically sized square spaces, endow it with a great deal of elastic units. It can easily bear an iterative and multidirectional pressure of 44.5 MPa produced by a sharp blade, and may completely recover to its initial state by a load of 180 000 times their own weight even under 95% strain. More importantly, the foam can also maintain structural integrity after experiencing a pressure of 2.8 GPa through siphoning. Computational modeling of the "buckling of shells" mechanism reveals the unique ladder-shaped graphene foam contributes to the superior cut resistance and good resilience. Based on this finding, it can be widely used in cutting resistance sensors, monitoring of sea level, and the detection of oily contaminants in water delivery pipelines.
RESUMO
3D graphene networks have shown extraordinary promise for high-performance electrochemical devices. Herein, the chemical vapor deposition synthesis of a highly porous 3D graphene foam (3D-GF) using naturally abundant calcined Iceland crystal as the template is reported. Intriguingly, the Iceland crystal transforms to CaO monolith with evenly distributed micro/meso/macropores through the releasing of CO2 at high temperature. Meanwhile, the hierarchical structure of the calcined template could be easily tuned under different calcination conditions. By precisely inheriting fine structure from the templates, the as-prepared 3D-GF possesses a tunable hierarchical porosity and low density. Thus, the hierarchical pores offer space for guest hybridization and provide an efficient pathway for ion/charge transport in typical energy conversion/storage systems. The 3D-GF skeleton electrode hybridized with Ni(OH)2 /Co(OH)2 through an optimal electrodeposition condition exhibits a high specific capacitance of 2922.2 F g-1 at a scan rate of 10 mV s-1 , and 2138.4 F g-1 at a discharge current density of 3.1 A g-1 . The hybrid 3D-GF symmetry supercapacitor shows a high energy density of 83.0 Wh kg-1 at a power density of 1011.3 W kg-1 and 31.4 Wh kg-1 at a high power density of 18 845.2 W kg-1 . The facile fabrication process enables the mass production of hierarchical porous 3D-GF for high-performance supercapacitors.
RESUMO
A platform is described for voltammetric sensing of hydrogen peroxide (H2O2). It is based on the use of nitrogen-doped graphite foam modified with Prussian Blue particles (PB/NGF). Graphite foam was synthesized by chemical vapor deposition, and doping with nitrogen was realized via dielectric barrier plasma discharge. PB particles were grown on the NGF through electrodeposition. SEM images of NGF verified the porous and interconnected structure of graphite foam, and XPS and Raman spectroscopy verified the successful doping with N. The performance of the PB/NGF electrode was characterized by CV and EIS which showed it to possess outstanding properties in terms of sensing H2O2. H2O2 was quantified in a range of 0.004 to 1.6 mM with a detection limit of 2.4 µM. The PB/NGF electrode also is shown to be a viable substrate for loading glucose oxidase (GOx). The GOx-functionalized electrode responds to glucose over the 0.2 to 20 mM concentration range at a potential of -50 mV (vs. Ag/AgCl), with a sensitivity of 27.48 mA M-1 cm-2 and a 0.1 M detection limit (at an S/N ratio of 3). The glucose sensor is selective, stable, and reproducible. The biosensor was successfully applied to the determination of glucose in spiked human serum samples, and this confirmed it practicability. Graphical abstract Schematic of a self-supporting amperometric glucose biosensor based on glucose oxidase and Prussian blue modified 3D nitrogen doped graphite foam.
RESUMO
The key challenge for high-performance sodium-ion batteries is the exploitation of appropriate electrode materials with a long cycling stability and high rate capability. Here, we report Sb2S5 nanoparticles (â¼5 nm) uniformly encapsulated in three-dimensional (3D) porous graphene foam, which were fabricated by a facile hydrothermal coassembly strategy, as a high-performance anode material for sodium-ion batteries. The as-prepared composite can be directly used as electrodes without adding a binder or current collector, exhibiting outstanding electrochemical performance with a high reversible capacity (845 mA h g-1 at 0.1 A g-1), ultralong cycling life (91.6% capacity retention after 300 cycles at 0.2 A g-1), and exceptional rate capability (525 mA h g-1 at 10.0 A g-1). This is attributed to fast Na+ ion diffusion from the ultrasmall nanoparticles and excellent electric transport between the active material and 3D porous graphene, which also provide an effective strategy for anchoring the nanoparticles. Experimental results show that the Sb2S5 undergoes a reversible reaction of Sb2S5 + 16Na â 5Na2S + 2Na3Sb during sodiation/desodiation. Moreover, a full cell with Na3(VO0.5)2(PO4)2F2/C cathode and the as-prepared composite anode was assembled, displaying high output voltage (â¼2.2 V) with a stable capacity of 828 mA h g-1 for anode material (with 100 cycles at 0.1 A g-1), showing the potential for practical application.
RESUMO
Herein, a flexible 6 × 6 pressure-sensitive array (based on the PDMS (Polydimethylsiloxane) porous substrate) was designed. We have developed a facile method to fabricate the porous substrate, by a single-step operation using the sugar-template method. This strategy effectively diminishes the complexity of the preparation process, as well as the device structure. The electrical resistivity of the stretchable array demonstrates the negative piezo resistive coefficient (NPRC) under 0-100 kpa. Moreover, the pressure-sensitive array reveals a high sensitivity and low delay time (<0.5 s) to the applied forces. Therefore, the pressure distribution could be easily recognized by testing its conductivity changes. Besides, these signal data can be collected into the upper computer, with the purpose of tracking and analyzing the azimuth of the applied loading. This cost-effective micro array has a broad application prospect for fabricating the tactile sensor, artificial skin, and human-computer interfaces.
RESUMO
A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D) graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF) wrapped in flexible polydimethylsiloxane (PDMS). Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.
RESUMO
The practical recycling of carbon dioxide (CO2) by the electrochemical reduction route requires an active, stable, and affordable catalyst system. Although noble metals such as gold and silver have been demonstrated to reduce CO2 into carbon monoxide (CO) efficiently, they suffer from poor durability and scarcity. Here we report three-dimensional (3D) graphene foam incorporated with nitrogen defects as a metal-free catalyst for CO2 reduction. The nitrogen-doped 3D graphene foam requires negligible onset overpotential (-0.19 V) for CO formation, and it exhibits superior activity over Au and Ag, achieving similar maximum Faradaic efficiency for CO production (â¼85%) at a lower overpotential (-0.47 V) and better stability for at least 5 h. The dependence of catalytic activity on N-defect structures is unraveled by systematic experimental investigations. Indeed, the density functional theory calculations confirm pyridinic N as the most active site for CO2 reduction, consistent with experimental results.
RESUMO
Freestanding, mechanically stable, and highly electrically conductive graphene foam (GF) is formed with a two-step facile, adaptable, and scalable technique. This work also demonstrates the formation of graphene foam with tunable densities and its use as strain/pressure sensor for both high and low strains and pressures.
RESUMO
An environmentally friendly, low-cost, and large-scale method is developed for fabrication of Cl-doped ZnO nanowire arrays (NWAs) on 3D graphene foam (Cl-ZnO NWAs/GF), and investigates its applications as a highly efficient field emitter and photocatalyst. The introduction of Cl-dopant in ZnO increases free electrons in the conduction band of ZnO and also leads to the rough surface of ZnO NWAs, which greatly improves the field emission properties of the Cl-ZnO NWAs/GF. The Cl-ZnO NWAs/GF demonstrates a low turn-on field (≈1.6 V µm(-1)), a high field enhancement factor (≈12844), and excellent field emission stability. Also, the Cl-ZnO NWAs/GF shows high photocatalytic efficiency under UV irradiation, enabling photodegradation of organic dyes such as RhB within ≈75 min, with excellent recyclability. The excellent photocatalytic performance of the Cl-ZnO NWAs/GF originates from the highly efficient charge separation efficiency at the heterointerface of Cl-ZnO and GF, as well as improved electron transport efficiency due to the doping of Cl. These results open up new possibilities of using Cl-ZnO and graphene-based hybrid nanostructures for various functional devices.
RESUMO
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM(-1) in the range of 25 nM-0.1 µM and 1.85 mA mM(-1) in the range of 0.1-60 µM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.
Assuntos
Ácido Úrico/análise , Antioxidantes/química , Ácido Ascórbico/química , Técnicas Biossensoriais , China , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Humanos , Imageamento Tridimensional , Índio/química , Limite de Detecção , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Compostos de Estanho/química , Ácido Úrico/sangue , Ácido Úrico/urina , Difração de Raios XRESUMO
The development of portable and wearable electronics has promoted increasing demand for high-performance power sources with high energy/power density, low cost, lightweight, as well as ultrathin and flexible features. Here, a new type of flexible Ni/Fe cell is designed and fabricated by employing Ni(OH)2 nanosheets and porous Fe2O3 nanorods grown on lightweight graphene foam (GF)/carbon nanotubes (CNTs) hybrid films as electrodes. The assembled f-Ni/Fe cells are able to deliver high energy/power densities (100.7 Wh/kg at 287 W/kg and 70.9 Wh/kg at 1.4 kW/kg, based on the total mass of active materials) and outstanding cycling stabilities (retention 89.1% after 1000 charge/discharge cycles). Benefiting from the use of ultralight and thin GF/CNTs hybrid films as current collectors, our f-Ni/Fe cell can exhibit a volumetric energy density of 16.6 Wh/l (based on the total volume of full cell), which is comparable to that of thin film battery and better than that of typical commercial supercapacitors. Moreover, the f-Ni/Fe cells can retain the electrochemical performance with repeated bendings. These features endow our f-Ni/Fe cells a highly promising candidate for next generation flexible energy storage systems.