Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130357, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444062

RESUMO

Accurate estimates of spatiotemporally resolved Polychlorinated dibenzo-p-dioxins (PCDD/Fs, or dioxins) emissions are critical for understanding their environmental fate and associated health risks. In this study, by utilizing an empirical regression model for PCDD/Fs emissions, we developed a global emission inventory for 17 toxic PCDD/Fs congeners from 8 source sectors with a spatial resolution of 1° × 1° from 2002 to 2018. The results show that PCDD/Fs emissions decreased by 25.7 % (12.5 kg TEQ) between 2002 and 2018, mostly occurring in upper- and lower-middle income countries. Globally, open-burning processes, waste incineration, ferrous and nonferrous metal production sectors and heat and power generation were the major source sectors of PCDD/Fs. Spatially, high PCDD/Fs emissions were mainly identified in East and South Asia, Southeast Asia, and part of Sub-Saharan Africa. We find that the declining trend of dioxin emissions over the past decades terminated from the early 2010s due to increasing significance of wildfire induced emissions in the total emission. The PCDD/Fs emission inventory developed in the present study was verified by inputting the inventory as initial conditions into an atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), to simulate PCDD/Fs concentrations in air and soil. The predicted concentrations were compared to field sampling data. The good agreement between the modeled and measured concentrations demonstrates the reliability of the inventory.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Dibenzofuranos , Reprodutibilidade dos Testes , Canadá
2.
Environ Pollut ; 290: 118071, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479160

RESUMO

The bioaccumulation and adverse effects of organophosphorus flame retardants (OPFRs) on human health have become a global concern. China produces the largest amount of OPFRs globally and has the highest global market share. However, little is known about its emission level and environmental cycling, thereby causing uncertainties in the assessment of the environmental and health impacts of OPFRs. We developed a gridded annual OPFRs emission inventory at 1/4° longitude by 1/4° latitude resolution over China from 2014 to 2018. The results show that the annual OPFRs emissions increased from approximately 670 tons/yr in 2014 to 1000 tons/yr in 2018 in China. Higher OPFR emissions were identified in Jiangxi, Shandong, Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD). In total, 2400 tons of OPFRs were released into the atmosphere during the multi-year period, in which production accounting for 56.6% of total OPFR emissions in China. An atmospheric transport model, the Canadian Model for Environmental Transport of Organochlorine Pesticides (CanMETOP), was employed to verify the gridded emission inventory and elucidate the atmospheric environmental fate of OPFRs. Modeled OPFRs in the air and soil agreed reasonably well with observed data, suggesting that the developed inventory was, to a large extent, reliable. The modeled atmospheric and surface soil concentrations of OPFRs across China ranged from 0 to 119 ng/m3 and 0 to 428 ng/g, respectively. East China is subjected to more intense OPFR contamination than the rest of the country. The results provide a valuable dataset and assessment of OPFRs, which may aid policy-makers and the scientific community in developing emission control strategies and evaluating the health and environmental consequences of OPFRs in China.


Assuntos
Retardadores de Chama , Canadá , China , Monitoramento Ambiental , Retardadores de Chama/análise , Humanos , Organofosfatos , Compostos Organofosforados , Rios
3.
Sci Total Environ ; 789: 148064, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323834

RESUMO

Every year in the post-monsoon season, ~1.7 billion tons of paddy stubble is burnt openly in the Indo-Gangetic Plain (IGP) producing persistent smog and air quality deterioration that affects the entire IGP. Information concerning the identity, amounts and spatial distribution of volatile organic compounds (VOCs) which drive ozone and aerosol formation is still largely unknown as existing global emission inventories have poor VOC speciation and rely on limited satellite overpasses for mapping burnt areas. Here, emission factors (EFs) of 77 VOCs were measured from paddy fire smoke and combined with 1 km × 1 km stubble burning activity constrained by annual crop production yields and detected fires to compile a new gridded emission inventory for 2017. Our results reveal a large source of acetaldehyde (37.5 ± 9.6 Ggy-1), 2-furaldehyde (37.1 ± 12.5 Ggy-1), acetone (34.7 ± 13.6 Ggy-1), benzene (9.9 ± 2.8 Ggy-1) and isocyanic acid (0.4 ± 0.2 Ggy-1) that are not accounted for by existing emission inventories (GFED, GFAS, FINv2.1). During October-November, these emissions (346 ± 65 Ggy-1 NMVOC; 38 ± 8 Ggy-1 NOx; 16 ± 4 Ggy-1 NH3; 129 ± 9 Ggy-1 PM2.5; 22,125 ± 3674 Ggy-1 GHG CO2 equivalents) are more than 20 times larger than corresponding emissions from traffic and municipal waste burning over north-west India. Mitigation of this source alone can therefore yield massive air-quality climate co-benefits for more than 500 million people.

4.
Environ Pollut ; 266(Pt 3): 115069, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763722

RESUMO

Open burning of crop residue is an important source of air pollution which is poorly characterized in South Asia. Currently, the gridded inventory reported by Global Fire Emissions Database for biomass burning including open burning of crop residue are of coarse resolution (0.25° × 0.25°), and may not be appropriate for a simulation for Nepal. This study develops a comprehensive high resolution (1 km × 1 km) gridded model-ready emissions inventory for Nepal to understand the spatial characteristics of air pollutant emissions from open burning. We estimate the national air pollutant emissions from crop residue burned between the years 2003 and 2017. The best available data on agricultural production, residue consumption patterns, agricultural burning parameters and emission factors were derived from secondary sources. The Monte Carlo method was used to estimate uncertainties. The mass of crop residue burned in 2016/17 was 2908 Gg (61-139%), which was 22% of the dry matter generated that year. By multiplying the burned crop residue mass by emission factors, the air pollutant emissions were estimated as 4140 for CO2 (56-144%), 154 for CO (4-196%), 6.5 for CH4 (7-193%), 1.2 for SO2 (60-140%), 24.5 for PM2.5 (30-170%), 8.6 for OC (38-162%), 2.2 for BC (-1-201%), 7 for NOx (54-146%), 22.5 for NMVOC (8-192%) and 2.7 for NH3 (3-197%) in unit of Gg yr-1. More than 80% of air pollutants were generated during the months of February to May from the open burning of crop residue. The findings of this paper indicate that substantial reduction in open field burning would dramatically improve air quality in both the Terai region and other parts of Nepal and help reduce negative health impacts associated with the open burning of residue such as premature deaths, respiratory disease, and cardiovascular disease.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Ásia , Monitoramento Ambiental , Nepal , Material Particulado/análise
5.
Environ Pollut ; 220(Pt A): 132-141, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27639614

RESUMO

China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/normas , Hidrocarbonetos Clorados/análise , Parafina/análise , Solo/química , China , Modelos Teóricos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA