Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Glob Chang Biol ; 30(8): e17479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39188225

RESUMO

Terrestrial gross primary productivity (GPP) is the largest carbon flux in the global carbon cycle and plays a crucial role in terrestrial carbon sequestration. However, historical and future global GPP estimates still vary markedly. In this study, we reduced uncertainties in global GPP estimates by employing an innovative emergent constraint method on remote sensing-based GPP datasets (RS-GPP), using ground-based estimates of GPP from flux towers as the observational constraint. Using this approach, the global GPP in 2001-2014 was estimated to be 126.8 ± 6.4 PgC year-1, compared to the original RS-GPP ensemble mean of 120.9 ± 10.6 PgC year-1, which reduced the uncertainty range by 39.6%. Independent space- and time-based (different latitudinal zones, different vegetation types, and individual year) constraints further confirmed the robustness of the global GPP estimate. Building on these insights, we extended our constraints to project global GPP estimates in 2081-2100 under various Shared Socioeconomic Pathway (SSP) scenarios: SSP126 (140.6 ± 9.3 PgC year-1), SSP245 (153.5 ± 13.4 PgC year-1), SSP370 (170.7 ± 16.9 PgC year-1), and SSP585 (194.1 ± 23.2 PgC year-1). These findings have important implications for understanding and projecting climate change, helping to develop more effective climate policies and carbon reduction strategies.


Assuntos
Ciclo do Carbono , Mudança Climática , Tecnologia de Sensoriamento Remoto , Incerteza , Sequestro de Carbono , Modelos Teóricos
2.
Glob Chang Biol ; 30(8): e17454, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132898

RESUMO

Tropical and subtropical evergreen broadleaved forests (TEFs) contribute more than one-third of terrestrial gross primary productivity (GPP). However, the continental-scale leaf phenology-photosynthesis nexus over TEFs is still poorly understood to date. This knowledge gap hinders most light use efficiency (LUE) models from accurately simulating the GPP seasonality in TEFs. Leaf age is the crucial plant trait to link the dynamics of leaf phenology with GPP seasonality. Thus, here we incorporated the seasonal leaf area index of different leaf age cohorts into a widely used LUE model (i.e., EC-LUE) and proposed a novel leaf age-dependent LUE model (denoted as LA-LUE model). At the site level, the LA-LUE model (average R2 = .59, average root-mean-square error [RMSE] = 1.23 gC m-2 day-1) performs better than the EC-LUE model in simulating the GPP seasonality across the nine TEFs sites (average R2 = .18; average RMSE = 1.87 gC m-2 day-1). At the continental scale, the monthly GPP estimates from the LA-LUE model are consistent with FLUXCOM GPP data (R2 = .80; average RMSE = 1.74 gC m-2 day-1), and satellite-based GPP data retrieved from the global Orbiting Carbon Observatory-2 (OCO-2) based solar-induced chlorophyll fluorescence (SIF) product (GOSIF) (R2 = .64; average RMSE = 1.90 gC m-2 day-1) and the reconstructed TROPOspheric Monitoring Instrument SIF dataset using machine learning algorithms (RTSIF) (R2 = .78; average RMSE = 1.88 gC m-2 day-1). Typically, the estimated monthly GPP not only successfully represents the unimodal GPP seasonality near the Tropics of Cancer and Capricorn, but also captures well the bimodal GPP seasonality near the Equator. Overall, this study for the first time integrates the leaf age information into the satellite-based LUE model and provides a feasible implementation for mapping the continental-scale GPP seasonality over the entire TEFs.


Assuntos
Florestas , Folhas de Planta , Tecnologia de Sensoriamento Remoto , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese , Modelos Teóricos , Luz , Árvores/crescimento & desenvolvimento , Modelos Biológicos , Clima Tropical
3.
Glob Chang Biol ; 30(1): e17138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273499

RESUMO

Water availability (WA) is a key factor influencing the carbon cycle of terrestrial ecosystems under climate warming, but its effects on gross primary production (EWA-GPP ) at multiple time scales are poorly understood. We used ensemble empirical mode decomposition (EEMD) and partial correlation analysis to assess the WA-GPP relationship (RWA-GPP ) at different time scales, and geographically weighted regression (GWR) to analyze their temporal dynamics from 1982 to 2018 with multiple GPP datasets, including near-infrared radiance of vegetation GPP, FLUXCOM GPP, and eddy covariance-light-use efficiency GPP. We found that the 3- and 7-year time scales dominated global WA variability (61.18% and 11.95%), followed by the 17- and 40-year time scales (7.28% and 8.23%). The long-term trend also influenced 10.83% of the regions, mainly in humid areas. We found consistent spatiotemporal patterns of the EWA-GPP and RWA-GPP with different source products: In high-latitude regions, RWA-GPP changed from negative to positive as the time scale increased, while the opposite occurred in mid-low latitudes. Forests had weak RWA-GPP at all time scales, shrublands showed negative RWA-GPP at long time scales, and grassland (GL) showed a positive RWA-GPP at short time scales. Globally, the EWA-GPP , whether positive or negative, enhanced significantly at 3-, 7-, and 17-year time scales. For arid and humid zones, the semi-arid and sub-humid zones experienced a faster increase in the positive EWA-GPP , whereas the humid zones experienced a faster increase in the negative EWA-GPP . At the ecosystem types, the positive EWA-GPP at a 3-year time scale increased faster in GL, deciduous broadleaf forest, and savanna (SA), whereas the negative EWA-GPP at other time scales increased faster in evergreen needleleaf forest, woody savannas, and SA. Our study reveals the complex and dynamic EWA-GPP at multiple time scales, which provides a new perspective for understanding the responses of terrestrial ecosystems to climate change.


Assuntos
Ecossistema , Água , Florestas , Ciclo do Carbono , Mudança Climática
4.
Glob Chang Biol ; 30(1): e17021, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962105

RESUMO

Climate change will impact gross primary productivity (GPP), net primary productivity (NPP), and carbon storage in wooded ecosystems. The extent of change will be influenced by thermal acclimation of photosynthesis-the ability of plants to adjust net photosynthetic rates in response to growth temperatures-yet regional differences in acclimation effects among wooded ecosystems is currently unknown. We examined the effects of changing climate on 17 Australian wooded ecosystems with and without the effects of thermal acclimation of C3 photosynthesis. Ecosystems were drawn from five ecoregions (tropical savanna, tropical forest, Mediterranean woodlands, temperate woodlands, and temperate forests) that span Australia's climatic range. We used the CABLE-POP land surface model adapted with thermal acclimation functions and forced with HadGEM2-ES climate projections from RCP8.5. For each site and ecoregion we examined (a) effects of climate change on GPP, NPP, and live tree carbon storage; and (b) impacts of thermal acclimation of photosynthesis on simulated changes. Between the end of the historical (1976-2005) and projected (2070-2099) periods simulated annual carbon uptake increased in the majority of ecosystems by 26.1%-63.3% for GPP and 15%-61.5% for NPP. Thermal acclimation of photosynthesis further increased GPP and NPP in tropical savannas by 27.2% and 22.4% and by 11% and 10.1% in tropical forests with positive effects concentrated in the wet season (tropical savannas) and the warmer months (tropical forests). We predicted minimal effects of thermal acclimation of photosynthesis on GPP, NPP, and carbon storage in Mediterranean woodlands, temperate woodlands, and temperate forests. Overall, positive effects were strongly enhanced by increasing CO2 concentrations under RCP8.5. We conclude that the direct effects of climate change will enhance carbon uptake and storage in Australian wooded ecosystems (likely due to CO2 enrichment) and that benefits of thermal acclimation of photosynthesis will be restricted to tropical ecoregions.


Assuntos
Mudança Climática , Ecossistema , Carbono , Dióxido de Carbono , Austrália , Florestas , Árvores/fisiologia , Fotossíntese , Aclimatação/fisiologia
5.
Environ Res ; 252(Pt 4): 119145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754610

RESUMO

The impact of CO2 fertilization on enhancing global forest gross primary productivity (GPP) is acknowledged, but its interaction with climate factors-air temperature (Tem), precipitation (Pre), vapor pressure deficit (VPD), and radiation (Rad)-remains unclear. In this study, global forest GPP trends from 1982 to 2018 were examined using BEPS, NIRv, FLUXCOM, and revised EC-LUE datasets, with interannual trends of 5.618 (p < 0.01), 5.831 (p < 0.01), 0.227, and 6.566 g C m-2 yr-1 (p < 0.01), respectively. Elevated CO2 was identified as the primary driver of GPP trends, with the dominant area ranging from 51.11% to 90.37% across different GPP datasets. In the NIRv and revised EC-LUE datasets, the positive impact of CO2 on GPP showed a decrease of 0.222 g C m-2 yr-1, while the negative impact of Rad increased by 0.007 g C m-2 yr-1. An inhibitory relationship was found between the actual effects of elevated CO2 and climate change on GPP in most forest types. At lower latitudes, Tem primarily constrained CO2 fertilization, while at higher latitudes, VPD emerged as the key limiting factor. This was mainly attributed to the potential trade-off or competition between elevated CO2 and climate change in influencing GPP, with strategic resource allocation varying across different forest ecosystems. This study highlights the significant inhibitory effects of elevated CO2 and climate change on global forest GPP, providing insights into the dynamic responses of forest ecosystems to changing environments.


Assuntos
Dióxido de Carbono , Mudança Climática , Florestas , Dióxido de Carbono/análise , Árvores
6.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911756

RESUMO

Reconstructing the history of biological productivity and atmospheric oxygen partial pressure (pO2) is a fundamental goal of geobiology. Recently, the mass-independent fractionation of oxygen isotopes (O-MIF) has been used as a tool for estimating pO2 and productivity during the Proterozoic. O-MIF, reported as Δ'17O, is produced during the formation of ozone and destroyed by isotopic exchange with water by biological and chemical processes. Atmospheric O-MIF can be preserved in the geologic record when pyrite (FeS2) is oxidized during weathering, and the sulfur is redeposited as sulfate. Here, sedimentary sulfates from the ∼1.4-Ga Sibley Formation are reanalyzed using a detailed one-dimensional photochemical model that includes physical constraints on air-sea gas exchange. Previous analyses of these data concluded that pO2 at that time was <1% PAL (times the present atmospheric level). Our model shows that the upper limit on pO2 is essentially unconstrained by these data. Indeed, pO2 levels below 0.8% PAL are possible only if atmospheric methane was more abundant than today (so that pCO2 could have been lower) or if the Sibley O-MIF data were diluted by reprocessing before the sulfates were deposited. Our model also shows that, contrary to previous assertions, marine productivity cannot be reliably constrained by the O-MIF data because the exchange of molecular oxygen (O2) between the atmosphere and surface ocean is controlled more by air-sea gas transfer rates than by biological productivity. Improved estimates of pCO2 and/or improved proxies for Δ'17O of atmospheric O2 would allow tighter constraints to be placed on mid-Proterozoic pO2.


Assuntos
Atmosfera/química , Ecossistema , Sedimentos Geológicos/química , Isótopos de Oxigênio/análise , Planeta Terra , Fenômenos Ecológicos e Ambientais , Ozônio/química
7.
Int J Biometeorol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235598

RESUMO

Understanding the influence of climatic factors on vegetation dynamics and cumulative effects is critical for global sustainable development. However, the response of vegetation to climate and the underlying mechanisms in different climatic zones remains unclear. In this study, we analyzed the response of vegetation gross primary productivity (GPP) to climatic factors and the cumulative effects across various vegetation types and climatic zones, utilizing data on precipitation (Pr), temperature (Ta), and the standardized precipitation evapotranspiration index (SPEI). The results showed that: (1) GPP showed significant differences among the seven climatic zones, with the highest value observed in zone VII, reaching 1860.07 gC·m- 2, and the lowest in zone I, at 126.03 gC·m- 2. (2) GPP was significantly and positively correlated with temperature in climatic zones I, IV, V, and VI and with precipitation in climatic zones I, II, and IV. Additionally, a significant positive correlated was found between SPEI and GPP in climatic zones I, II, and IV. (3) Drought exerted a cumulative effect on GPP in 45.10% of the regions within China, with an average cumulative duration of 5 months. These effects persisted for 6-8 months in zones I, II, and VII, and for 2-4 months in zones III, IV and VI. Among different vegetation types, forests experienced longest cumulative effect time of 6 months, followed by grasslands (5 months), croplands (4 months), and shrublands (4 months). The cumulative time scale decreased with increasing annual SPEI. The varying responses and accumulation of GPP to drought among different vegetation types in various climatic zones underscore the complexity of vegetation-climate interactions the response and accumulation of GPP to drought.

8.
Ecol Lett ; 26(9): 1510-1522, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353910

RESUMO

Directly observing autotrophic biomass at ecologically relevant frequencies is difficult in many ecosystems, hampering our ability to predict productivity through time. Since disturbances can impart distinct reductions in river productivity through time by modifying underlying standing stocks of biomass, mechanistic models fit to productivity time series can infer underlying biomass dynamics. We incorporated biomass dynamics into a river ecosystem productivity model for six rivers to identify disturbance flow thresholds and understand the resilience of primary producers. The magnitude of flood necessary to disturb biomass and thereby reduce ecosystem productivity was consistently lower than the more commonly used disturbance flow threshold of the flood magnitude necessary to mobilize river bed sediment. The estimated daily maximum percent increase in biomass (a proxy for resilience) ranged from 5% to 42% across rivers. Our latent biomass model improves understanding of disturbance thresholds and recovery patterns of autotrophic biomass within river ecosystems.


Assuntos
Ecossistema , Rios , Biomassa , Fatores de Tempo , Ciclo do Carbono
9.
New Phytol ; 240(3): 984-1002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37583086

RESUMO

Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate.

10.
Glob Chang Biol ; 29(19): 5652-5665, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37497614

RESUMO

More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate-plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012-2015 California drought. Our study area is a mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011-2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012-2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping-point collapse to recovery. We present novel process-driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states-showing that the full extent of GPP response takes several years to arise. Thus, long-term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.


Assuntos
Secas , Ecossistema , Teorema de Bayes , Florestas , Solo , Carbono
11.
Glob Chang Biol ; 29(18): 5276-5291, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37427494

RESUMO

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13 CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.


Assuntos
Carbono , Ecossistema , Pradaria , Dióxido de Carbono , Nitrogênio , Plantas , Solo
12.
Glob Chang Biol ; 29(16): 4543-4555, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37198735

RESUMO

Shifts in plant phenology regulate ecosystem structure and function, which feeds back to the climate system. However, drivers for the peak of growing season (POS) in seasonal dynamics of terrestrial ecosystems remain unclear. Here, spatial-temporal patterns of POS dynamics were analyzed by solar-induced chlorophyll fluorescence (SIF) and vegetation index in the Northern Hemisphere over the past two decades from 2001 to 2020. Overall, a slow advanced POS was observed in the Northern Hemisphere, while a delayed POS distributed mainly in northeastern North America. Trends of POS were driven by the start of growing season (SOS) rather than pre-POS climate both at hemisphere and biome scale. The effect of SOS on the trends in POS was the strongest in shrublands while the weakest in evergreen broad-leaved forest. These findings highlight the crucial role of biological rhythms rather than climatic factors in exploring seasonal carbon dynamics and global carbon balance.


Assuntos
Clima , Ecossistema , Estações do Ano , Florestas , Mudança Climática , Carbono
13.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765809

RESUMO

The Silk Road Economic Belt and the 21st Century Maritime Silk Road Initiative (BRI) proposed in 2013 by China has greatly accelerated the social and economic development of the countries along the Belt and Road (B&R) region. However, the international community has questioned its impact on the ecological environment and a comprehensive assessment of ecosystem quality changes is lacking. Therefore, this study proposes an objective and automatic method to assess ecosystem quality and analyzes the spatiotemporal changes in the B&R region. First, an ecosystem quality index (EQI) is established by integrating the vegetation status derived from three remote sensing ecological parameters including the leaf area index, fractional vegetation cover and gross primary productivity. Then, the EQI values are automatically categorized into five ecosystem quality levels including excellent, good, moderate, low and poor to illustrate their spatiotemporal changes from the years 2016 to 2020. The results indicate that the spatial distributions of the EQIs across the B&R region exhibited similar patterns in the years 2016 and 2020. The regions with excellent levels accounted for the lowest proportion of less than 12%, while regions with moderate, low and poor levels accounted for more than 68% of the study area. Moreover, based on the EQI pattern analysis between the years 2016 and 2020, the regions with no significant EQI change accounted for up to 99.33% and approximately 0.45% experienced a significantly decreased EQI. Therefore, this study indicates that the ecosystem quality of the B&R region was relatively poor and experienced no significant change in the five years after the implementation of the "Vision and Action to Promote the Joint Construction of the Silk Road Economic Belt and the 21st Century Maritime Silk Road". This study can provide useful information for decision support on the future ecological environment management and sustainable development of the B&R region.


Assuntos
Ecossistema , Meio Ambiente , China , Folhas de Planta
14.
J Environ Manage ; 326(Pt B): 116756, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423408

RESUMO

Drought is a major driver of interannual variability in the gross primary productivity (GPP) of global terrestrial ecosystems, and drought recovery time has been widely used to assess ecosystem responses to drought. However, the response of the carbon-water coupled cycle to drought, especially changes in the correlation between drought intensity and carbon-water coupling throughout the recovery time, remains unclear. In this study, the Yellow River Basin (YRB) located mostly in drylands was the study area. We assessed the correlation between the standardized water vapour pressure deficit (VPD) and the water use efficiency of ecosystems (WUEe) and water use efficiency of canopies (WUEc) every month with the drought recovery time of GPP. We found that the drought intensity in the middle reach of the YRB (MYRB) was greater and the drought recovery time was longer than those in the upper reach (UYRB) and lower reach (LYRB) during the period from 2003 to 2017. In terms of the correlation between drought intensity and carbon-water coupling, the greater the VPD was, the lower the WUEc. In addition, the correlation of WUEc with VPD was higher than that of WUEe in most areas of the YRB, especially in the LYRB. On the watershed level, the correlation between the two types of WUE and VPD increased gradually with the recovery time, while the correlation between WUEc and VPD (mostly negative) changed more than the correlation between WUEe and VPD (mostly positive). Therefore, the response of WUEc to meteorological drought should be given more attention, especially during the middle and late stages of drought, since it exhibited an opposite signal compared to that of WUEe during drought recovery.


Assuntos
Secas , Ecossistema , Pressão de Vapor , Rios , Carbono
15.
J Environ Manage ; 338: 117780, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965424

RESUMO

Atmospheric dryness events are bound to have a broad and profound impact on the functions and structures of grassland ecosystems. Current research has confirmed that atmospheric dryness is a key moisture constraint that inhibits grassland productivity, yet the risk threshold for atmospheric dryness to initiate ecosystem productivity loss has not been explored. Based on this, we used four terrestrial ecosystem models to simulate gross primary productivity (GPP) data, analyzed the role of vapor pressure deficit (VPD) in regulating interannual variability in Chinese grasslands by focusing on the dependence structure of VPD and GPP, and then constructed a bivariate linkage function to calculate the conditional probability of ecosystem GPP loss under atmospheric dryness, and further analyzed the risk threshold of ecosystem GPP loss triggered by atmospheric dryness. The main results are as follows: we found that (1) the observed and modeled VPD of Chinese grasslands increases rapidly in both historical and future periods. VPD has a strongly negative regulation on ecosystem GPP, and atmospheric dryness is an important moisture constraint that causes deficit and even death to ecosystem GPP. (2) The probability of the enhanced atmospheric dryness that induced GPP decline in Chinese grasslands in the future period increases significantly. (3) When the VPD is higher than 40.07 and 27.65 percentile of the past and future time series, respectively, the risk threshold of slight ecosystem GPP loss can be easily initiated by atmospheric dryness. (4) When the VPD is higher than 82.57 and 65.09 percentile, respectively, the threshold of moderate ecosystem GPP loss can be exceeded by the benchmark probability. (5) The risk threshold of severe ecosystem GPP loss is not initiated by atmospheric dryness in the historical period, and the threshold of severe ecosystem GPP loss can be initiated when the future VPD is higher than 91.92 percentile. In total, a slight atmospheric dryness event is required to initiate a slight ecosystem GPP loss threshold, and a stronger atmospheric dryness event is required to initiate a severe ecosystem GPP loss. Our study enhances the understandings of past and future atmospheric dryness on grassland ecosystems, and strongly suggests that more attention be invested in improving next-generation models of vegetation dynamics processes with respect to the response of mechanisms of ecosystem to atmospheric dryness.


Assuntos
Ecossistema , Pradaria , Ciclo do Carbono , China , Probabilidade
16.
Environ Monit Assess ; 195(12): 1495, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982896

RESUMO

Accurate and quantitative regional estimates of the carbon budget require an integration of eddy covariance (EC) flux-tower observations and remote sensing in ecosystem models. In this study, a simple remote sensing driven light use efficiency (LUE) model was used to estimate the primary productivity for major cropping systems using multi-temporal satellite data over the Saharanpur district in India.The model is based on radiation absorption and its conversion into biomass. The LUE model was implemented for major crop rotations derived from the time-series of Sentinel-2 and Landsat 8 with monthly satellite-based spatially explicit fields of photosynthetically active radiation (PAR), fraction of absorbed PAR (fAPAR) and down-regulated light use efficiency. Incident PAR and fAPAR were estimated on monthly basis from the ground-calibrated empirical equation using INSAT-3D insolation product and remote sensing-based vegetation indices, respectively. Spatial LUE maps created by down-regulating maximum LUE (EC tower-based) with water and temperature stressors derived from land surface water index (LSWI) and EC-based cardinal temperature, respectively. LUE-based modeled GPP over the sugarcane-wheat system was found higher than the rice-wheat system in Saharanpur district. This is because C4 crop (sugarcane) has very high photosynthetic efficiency compared to C3 crops (rice and wheat). Modeled GPP over the sugarcane-wheat system was found in good agreement with observed EC tower-based GPP (Index of Agreement = 0.93). Further regionally calibrated remote sensing-based LUE model well captures gross photosynthesis rates (GPP) over cropland ecosystem compared to globally modeled MODIS GPP product.


Assuntos
Oryza , Saccharum , Ecossistema , Monitoramento Ambiental , Biomassa , Carbono , Grão Comestível , Triticum , Água
17.
Glob Chang Biol ; 28(9): 3083-3093, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174579

RESUMO

The length of the growing season has a large influence on the carbon, water, and energy fluxes of global terrestrial ecosystems. While there has been mounting evidence of an advanced start of the growing season mostly due to elevated spring air temperatures, the mechanisms that control the end of the growing season (EOS) in most ecosystems remain relatively less well understood. Recently, a strong lagged control of EOS by growing season photosynthesis has been proposed, suggesting that more productive growing seasons lead to an earlier EOS. However, this relationship has not been extensively tested with in-situ observations across a variety of ecosystems. Here, we use observations from 40 eddy-covariance flux tower sites in temperate and boreal ecosystems in the northern hemisphere with more than 10 years of observations (594 site-years), ground observations of phenology, satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), and three leaf senescence models to test the extent of a relationship between growing season photosynthesis and end of season senescence. The results suggest that there is no significant negative relationship between growing season photosynthesis and observed leaf senescence, flux-inferred EOS estimates, or remotely sensed phenological metrics, in most ecosystems. On the contrary, while we found negative effects of summer air temperatures and autumn vapor pressure deficit on EOS, more productive growing seasons were typically related to a later, not earlier, EOS. Our results challenge recent reports of carry-over effects of photosynthesis on EOS timing, and suggest those results may not hold over a large range of ecosystems.


Assuntos
Ecossistema , Senescência Vegetal , Fotossíntese , Estações do Ano , Temperatura
18.
Glob Chang Biol ; 28(11): 3620-3635, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35343026

RESUMO

Drought has broad and deep impacts on vegetation. Studies on the effects of drought on vegetation have been conducted over years. Recently, the cumulative effect of drought is recognized as another key factor affecting plant growth. However, global-scale studies on this phenomenon are still lacking. Thus, based on new satellite based gross primary productivity (GPP) and multi-temporal scale Standardized Precipitation Evapotranspiration Index data sets, we explored the cumulative effect duration (CED) of drought on global vegetation GPP and analyzed its variability across elevations and climatic zones. The main findings were as follows: (1) The cumulative effect of drought on GPP was widespread, with an average CED of 4.89 months. (2) CED of drought on GPP varied among vegetation types. Specifically, grasslands showed the longest duration, with an average value of 5.28 months, followed by shrublands (5.09 months), wetlands (5.03 months), croplands (4.85 months), savannas (4.58 months), and forestlands (4.57 months). (3) CED of drought on GPP changes with climate conditions. It decreased with the decrease of precipitation in the driest month (Pdry ) and mean annual precipitation in tropical and arid climate zones, respectively. In both temperate and cold climate zones, CED of drought on GPP was shorter in areas with dry winter than that in areas with dry summer. It increased with the decrease of mean annual air temperature in tropical climate zones and decreased with the increase of summer temperature in temperate and cold climatic zones. (4) With increasing elevation, CED of drought on GPP showed a pattern of increasing (0-3000 m), then decreasing (3000-5000 m), and increasing again (>5000 m). Our findings highlight the heterogeneity of CED of drought on GPP, owing to differences in vegetation types, long-term hydrothermal conditions, elevation, etc. The results could deepen our understanding of the effects of drought on global vegetation.


Assuntos
Mudança Climática , Secas , Ecossistema , Florestas , Estações do Ano
19.
Glob Chang Biol ; 28(14): 4359-4376, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373899

RESUMO

Many tropical regions are experiencing an intensification of drought, with increasing severity and frequency. The ecosystem response to these changes is still highly uncertain. On short time scales (from diurnal to seasonal), tropical forests respond to water stress by physiological controls, such as stomatal regulation and phenological adjustment, to cope with increasing atmospheric water demand and reduced water supply. However, the interactions among biological processes and co-varying environmental factors that determine the ecosystem-level fluxes are still unclear. Furthermore, climate variability at longer time scales, such as that generated by ENSO, produces less predictable effects because it depends on a highly stochastic combination of factors that might vary among forests and even between events in the same forest. This study will present some emerging patterns of response to water stress from 5 years of water, carbon, and energy fluxes observed on a seasonal tropical forest in central Panama, including an increase in productivity during the 2015 El Niño. These responses depend on the combination of environmental factors experienced by the forest throughout the seasonal cycle, in particular, increase in solar radiation, stimulating productivity, and increasing vapor pressure deficit (VPD) and decreasing soil moisture, limiting stomata opening. These results suggest a critical role of plant hydraulics in mediating the response to water stress over a broad range of temporal scales (diurnal, intraseasonal, seasonal, and interannual), by acclimating canopy conductance to light and VPD during different soil moisture regimes. A multilayer photosynthesis model coupled with a plant hydraulics scheme can reproduce these complex responses. However, results depend critically on parameters regulating water transport efficiency and the cost of water stress. As these costs have not been properly identified and quantified yet, more empirical research is needed to elucidate physiological mechanisms of hydraulic failure and recover, for example embolism repair and xylem regrowth.


Assuntos
Desidratação , Ecossistema , Secas , El Niño Oscilação Sul , Florestas , Folhas de Planta/fisiologia , Plantas , Solo , Árvores/fisiologia
20.
Global Biogeochem Cycles ; 36(9): e2021GB007216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36590828

RESUMO

The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA