Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.066
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(6): 1215-1224.e6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788711

RESUMO

Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários/imunologia , Vacinas Antimaláricas/imunologia , Adulto , Fragmentos Fc das Imunoglobulinas/imunologia , Merozoítos/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Feminino , Masculino , Adulto Jovem
2.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480679

RESUMO

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Assuntos
Replicação do DNA , Proteínas de Escherichia coli , Escherichia coli , Enxofre , Escherichia coli/metabolismo , Escherichia coli/genética , Enxofre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , DNA Bacteriano/metabolismo , Enzimas de Restrição do DNA/metabolismo , Ligação Proteica , DNA/metabolismo , Sítios de Ligação
3.
Annu Rev Microbiol ; 74: 497-520, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680451

RESUMO

All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.


Assuntos
Bactérias/imunologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Transferência Genética Horizontal , Interações Microbianas , Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia
4.
Proc Natl Acad Sci U S A ; 119(31): e2121058119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878023

RESUMO

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Hormônios Peptídicos , Raízes de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases , Raízes de Plantas/crescimento & desenvolvimento
5.
J Cell Mol Med ; 28(2): e18033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009603

RESUMO

In our previous research, we proved that ailanthone (AIL) inhibits the growth of gastric cancer (GC) cells and causes apoptosis by inhibiting P23. However, we still find some GC organoids are insensitive to AIL. We have done some sequencing analysis and found that the insensitive strains are highly expressed in PARP1. In this study, we investigated whether AIL can enhance the anti-tumour effect of PARPi in GC. CCK8 and spheroid colony formation assay were used to measure anti-tumour effects. SynergyFinder software was used to calculate the synergy score of the drug combination and flow cytometry was used to detect apoptosis. Western blot, IHC, IF tests were used to measure protein expression. Finally, nude mouse xenograft models were used to verify the in vitro mechanisms. High expression of PARP1 was found to be the cause of drug insensitivity. When AIL is paired with a PARP1 inhibitor, olaparib (OLP), drug sensitivity improves. We discovered that this combination functions by blocking off HSP90-BRCA1 interaction and inhibiting the activity of PARP1, thus in turn inhibiting the homologous recombination deficiency and base excision repair pathway to finally achieve synthetic lethality through increased sensitivity. Moreover, P23 can regulate BRCA1 in GC in vitro. This study proves that the inhibitory effect of AIL on BRCA1 allowed even cancer cells with normal BRCA1 function to be sensitive to PARP inhibitors when it is simultaneously administered with OLP. The results greatly expanded the scope of the application of PARPi.


Assuntos
Quassinas , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Piridinolcarbamato , Linhagem Celular Tumoral , Reparo do DNA , Ftalazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética
6.
BMC Biotechnol ; 24(1): 11, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443850

RESUMO

BACKGROUND: One of the current challenges is to secure wheat crop production to meet the increasing global food demand and to face the increase in its purchasing power. Therefore, the current study aimed to exploit a new synthesized nanocomposite to enhance wheat growth under both normal and drought regime. The effectiveness of this nanocomposite in improving the microbiological quality of irrigation water and inhibiting the snail's growth was also assessed. RESULTS: Upon the employed one-step synthesis process, a spherical Fe/Cu/P nanocomposite was obtained with a mean particle size of 4.35 ± 1.524 nm. Cu2+, Fe2+, and P4+ were detected in the dried nanocomposite at 14.533 ± 0.176, 5.200 ± 0.208, and 34.167 ± 0.203 mg/ml concentration, respectively. This nanocomposite was found to exert antibacterial activity against Escherichia coli and Salmonella typhi. It caused good inhibition percent against Fusarium oxysporum (43.5 ± 1.47%) and reduced both its germination rate and germination efficiency. The lethal concentration 50 (LC50) of this nanocomposite against Lanistes carinatus snails was 76 ppm. The treated snails showed disturbance in their feeding habit and reached the prevention state. Significant histological changes were observed in snail digestive tract and male and female gonads. Drought stress on wheat's growth was mitigated in response to 100 and 300 ppm treatments. An increase in all assessed growth parameters was reported, mainly in the case of 100 ppm treatment under both standard and drought regimes. Compared to control plants, this stimulative effect was accompanied by a 2.12-fold rise in mitotic index and a 3.2-fold increase in total chromosomal abnormalities. CONCLUSION: The finding of the current study could be employed to mitigate the effect of drought stress on wheat growth and to enhance the microbiological quality of irrigation water. This is due to the increased efficacy of the newly synthesized Fe/Cu/P nanocomposite against bacteria, fungi, and snails. This methodology exhibits potential for promoting sustainable wheat growth and water resource conservation.


Assuntos
Anti-Infecciosos , Triticum , Cobre/farmacologia , Escherichia coli , Água , Fosfatos , Ferro
7.
Invest New Drugs ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789849

RESUMO

Worldwide, pancreatic cancer (PC) is a major health problem and almost 0.5 million people were diagnosed with PC in 2020. In the United States, more than 64,000 adults will be diagnosed with PC in 2023. PC is highly resistant to currently available treatments and standard of care chemotherapies cause serious side effects. Most PC patients are resistant to clinical therapies. Combination therapy has showed superior efficacy over single-agent treatment. However, most therapy has failed to show a significant improvement in overall survival due to treatment-related toxicity. Developing efficacious clinically useful PC therapies remains a challenge. Herein, we show the efficacy of an innovative pathway modulator, p53-Activator Wnt Inhibitor-2 (PAWI-2) against tumors arising from human pancreatic cancer stem cells (i.e., hPCSCs, FGß3 cells). PAWI-2 is a potent inhibitor of tumor growth. In the present study, we showed PAWI-2 potently inhibited growth of tumors from hPCSCs in orthopic xenograft models of both male and female mice. PAWI-2 worked in a non-toxic manner to inhibit tumors. Compared to vehicle-treated animals, PAWI-2 modulated molecular regulators of tumors. Anti-cancer results showed PAWI-2 in vivo efficacy could be correlated to in vitro potency to inhibit FGß3 cells. PAWI-2 represents a safe, new approach to combat PC.

8.
Arch Microbiol ; 206(7): 303, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878203

RESUMO

Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.


Assuntos
Bactérias , Saccharomyces cerevisiae , Fatores de Virulência , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749678

RESUMO

AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.


Assuntos
Aspergillus , Meios de Cultura , Gases em Plasma , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos dos fármacos , Gases em Plasma/farmacologia , Modelos Biológicos , Temperatura , Ágar
10.
Environ Res ; 252(Pt 2): 118958, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640987

RESUMO

In modern agricultural practices, agrochemicals and pesticides play an important role in protecting the crops from pests and elevating agricultural productivity. This strategic utilization is essential to meet global food demand due to the relentless growth of the world's population. However, the indiscriminate application of these substances may result in environmental hazards and directly affect the soil microorganisms and crop production. Considering this, an in vitro study was carried out to evaluate the pesticides' effects i.e. lambda cyhalothrin (insecticide) and fosetyl aluminum (fungicide) at lower, recommended, and higher doses on growth behavior, enzymatic profile, total soluble protein production, and lipid peroxidation of bacterial specimens (Pseudomonas aeruginosa and Bacillus subtilis). The experimental findings demonstrated a concentration-dependent decrease in growth of both tested bacteria, when exposed to fosetyl aluminium concentrations exceeding the recommended dose. This decline was statistically significant (p < 0.000). However, lambda cyhalothrin at three times of recommended dose induces 10% increase in growth of Pseudomonas aeruginosa (P. aeruginosa) and 76.8% decrease in growth of Bacillus subtilis (B. subtilis) respectively as compared to control. These results showed the stimulatory effect of lambda cyhalothrin on P. aeruginosa and inhibitory effect on B. subtilis. Pesticides induced notable alterations in biomarker enzymatic assays and other parameters related to oxidative stress among bacterial strains, resulting in increased oxidative stress and membrane permeability. Generally, the maximum toxicity of both (P. aeruginosa and B. subtilis) was shown by fosetyl aluminium, at three times of recommended dose. Fosetyl aluminium induced morphological changes like cellular cracking, reduced viability, aberrant margins and more damage in both bacterial strains as compared to lambda cyhalothrin when observed under scanning electron microscope (SEM). Conclusively the, present study provide an insights into a mechanistic approach of pyrethroid insecticide and phosphonite fungicide induced cellular toxicity towards bacteria.


Assuntos
Bacillus subtilis , Nitrilas , Pseudomonas aeruginosa , Piretrinas , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Piretrinas/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Nitrilas/toxicidade , Inseticidas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Fungicidas Industriais/toxicidade
11.
Environ Res ; 248: 118251, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278506

RESUMO

Over the years, algae have proved to be a water pollutant due to global warming, climate change, and the unregulated addition of organic compounds in water bodies from diffused resources. Harmful algal blooms (HABs) are severely affecting the health of humans and aquatic ecosystems. Among available anti-blooming technologies, semiconductor photocatalysis has come forth as an effective alternative. In the recent past, literature has been modified extensively with a decisive knowledge regarding algal invasion, desired preparation of nanomaterials with enhanced visible light absorption capacity and mechanisms for algal cell denaturation. The motivation behind this review article was to gather algal inactivation data in a systematic way based on various research studies, including the construction of nanoparticles and purposely to test their anti-algal activities under visible irradiation. Additionally, this article mentions variety of starting materials employed for preparation of various nano-powders with focus on their synthesis routes, analytical techniques as well as proposed mechanisms for lost cellular integrity in context of reduced chlorophyll' a' level, cell rapture, cell leakage and damages to other physiological constituents; credited to oxidative damage initiated by reactive oxidation species (ROS). Various floating and recyclable composited catalysts Ag2CO3-N: GO, Ag/AgCl@ZIF-8, Ag2CrO4-g-C3N4-TiO2/mEP proved to be game-changers owing to their enhanced VL absorption, adsorption, stability, separation and reusability. An outlook for the generalized limitations of published reports, cost estimations for practical implementation, issues and challenges faced by nano-photocatalysts and possible opportunities for future studies are also proposed. This review will be able to provide vast insights for coherent fabrication of catalysts, breakthroughs in experimental methodologies and help in elaboration of damage mechanisms.


Assuntos
Cianobactérias , Nanopartículas , Humanos , Ecossistema , Luz , Proliferação Nociva de Algas
12.
Food Microbiol ; 121: 104498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637069

RESUMO

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Assuntos
Bacillus , Lauratos , Monoglicerídeos , Monoglicerídeos/farmacologia , Monoglicerídeos/química , Ácidos , Ácidos Láuricos/farmacologia , Carbono
13.
J Pharmacokinet Pharmacodyn ; 51(2): 169-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37930506

RESUMO

In-vitro to in-vivo correlations (IVIVC), relating in-vitro parameters like IC50 to in-vivo drug exposure in plasma and tumour growth, are widely used in oncology for experimental design and dose decisions. However, they lack a deeper understanding of the underlying mechanisms. Our paper therefore focuses on linking empirical IVIVC relations for small-molecule kinase inhibitors with a semi-mechanistic tumour-growth model. We develop an approach incorporating parameters like the compound's peak-trough ratio (PTR), Hill coefficient of in-vitro dose-response curves, and xenograft-specific properties. This leads to formulas for determining efficacious doses for tumor stasis under linear pharmacokinetics equivalent to traditional empirical IVIVC relations, but enabling more systematic analysis. Our findings reveal that in-vivo xenograft-specific parameters, specifically the growth rate (g) and decay rate (d), along with the average exposure, are generally more significant determinants of tumor stasis and effective dose than the compound's peak-trough ratio. However, as the Hill coefficient increases, the dependency of tumor stasis on the PTR becomes more pronounced, indicating that the compound is more influenced by its maximum or trough values rather than the average exposure. Furthermore, we discuss the translation of our method to predict population dose ranges in clinical studies and propose a resistance mechanism that solely relies on specific in-vivo xenograft parameters instead of IC50 exposure coverage. In summary, our study aims to provide a more mechanistic understanding of IVIVC relations, emphasizing the importance of xenograft-specific parameters and PTR on tumor stasis.


Assuntos
Modelos Teóricos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico
14.
Artigo em Inglês | MEDLINE | ID: mdl-38904912

RESUMO

Quantitative predictive modeling of cancer growth, progression, and individual response to therapy is a rapidly growing field. Researchers from mathematical modeling, systems biology, pharmaceutical industry, and regulatory bodies, are collaboratively working on predictive models that could be applied for drug development and, ultimately, the clinical management of cancer patients. A plethora of modeling paradigms and approaches have emerged, making it challenging to compile a comprehensive review across all subdisciplines. It is therefore critical to gauge fundamental design aspects against requirements, and weigh opportunities and limitations of the different model types. In this review, we discuss three fundamental types of cancer models: space-structured models, ecological models, and immune system focused models. For each type, it is our goal to illustrate which mechanisms contribute to variability and heterogeneity in cancer growth and response, so that the appropriate architecture and complexity of a new model becomes clearer. We present the main features addressed by each of the three exemplary modeling types through a subjective collection of literature and illustrative exercises to facilitate inspiration and exchange, with a focus on providing a didactic rather than exhaustive overview. We close by imagining a future multi-scale model design to impact critical decisions in oncology drug development.

15.
Chem Biodivers ; 21(4): e202301431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363027

RESUMO

Terpene-derived alkaloids show a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial and cytotoxicity effects. In this work, homologated monoterpene amines have been prepared via a rhodium-catalyzed hydroaminomethylation of biomass-based alkenes, such as (R)-limonene, linalool, myrcene and camphene, in combination with secondary amines of aliphatic and aromatic nature, namely morpholine and N-methylaniline, leading to highly chemo- and regioselective processes. The as-prepared amines were obtained in 50-99 % overall yields, and in vitro tested on a human colon cancer cell line (HCT-116) to evaluate their cytotoxic potential. The lead compound of the series (3 a) showed cytotoxicity in the micromolar range (IC50 52.46 µM) via the induction of cell death by apoptosis, paving the way towards further structure-activity relationship studies.


Assuntos
Aminas , Ródio , Humanos , Aminas/farmacologia , Terpenos/farmacologia , Estrutura Molecular , Catálise
16.
Foodborne Pathog Dis ; 21(4): 248-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150235

RESUMO

Listeria monocytogenes (Lm) mainly infect pregnant women, children, the elderly, and other populations with low immunity causing septicemia and meningitis. Healthy people can tolerate higher doses of Lm and only cause gastrointestinal symptoms such as abdominal pain and diarrhea after infection. Compared to the above population, healthy people have a richer and more diverse gut microbiota. In this study, we show that the microbiota in the large intestine and the feces of mice can significantly inhibit the growth of Lm compared to the microbiota in the small intestine. Bacteria larger than 1 µm in the gut microbiota play an important role in inhibiting Lm growth. 16s rRNA sequencing results show that these bacteria are mainly composed of Clostridiales under the phylum Firmicutes, including Ruminiclostridium, Butyricicoccus, Lachnoclostridium, Roseburia, Coprooccus, and Blautia. Thus, we demonstrate that there are some potential functional bacteria in the gut microbiota that can increase resistance against Lm.


Assuntos
Listeria monocytogenes , Listeriose , Microbiota , Criança , Humanos , Feminino , Gravidez , Animais , Camundongos , Idoso , Listeria monocytogenes/genética , Clostridiales/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia
17.
Pharm Stat ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858081

RESUMO

Animal models are used in cancer pre-clinical research to identify drug targets, select compound candidates for clinical trials, determine optimal drug dosages, identify biomarkers, and ensure compound safety. This tutorial aims to provide an overview of study design and data analysis from animal studies, focusing on tumor growth inhibition (TGI) studies used for prioritization of anticancer compounds. Some of the experimental design aspects discussed here include the selection of the appropriate biological models, the choice of endpoints to be used for the assessment of anticancer activity (tumor volumes, tumor growth rates, events, or categorical endpoints), considerations on measurement errors and potential biases related to this type of study, sample size estimation, and discussions on missing data handling. The tutorial also reviews the statistical analyses employed in TGI studies, considering both continuous endpoints collected at single time-point and continuous endpoints collected longitudinally over multiple time-points. Additionally, time-to-event analysis is discussed for studies focusing on event occurrences such as animal deaths or tumor size reaching a certain threshold. Furthermore, for TGI studies involving categorical endpoints, statistical methodology is outlined to compare outcomes among treatment groups effectively. Lastly, this tutorial also discusses analysis for assessing drug combination synergy in TGI studies, which involves combining treatments to enhance overall treatment efficacy. The tutorial also includes R sample scripts to help users to perform relevant data analysis of this topic.

18.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673944

RESUMO

It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2'-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2'-methylthiamine has not been studied. We have come forward with a simplified method of synthesis using commercially available substrates and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found to inhibit the growth and metabolism of cancer cells significantly better than 2'-methylthiamine (GI50 36 and 107 µM, respectively), while 2'-methylthiamine is more selective for cancer cells than oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2'-methylthiamine (ΔG -8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine (ΔG -7.5 kcal/mol ) and oxythiamine (ΔG -7.0 kcal/mol), which includes 2'-methylthiamine as a potential cytostatic. Our results suggest that the limited effect of 2'-methylthiamine on HeLa arises from the related arduous transport as compared to oxythiamine. Given that 2'-methylthiamine may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential cytostatic. Thus, research should be carried out in order to find the best way to improve the transport of 2'-methylthiamine into cells, which may trigger its cytostatic properties.


Assuntos
Simulação de Acoplamento Molecular , Oxitiamina , Humanos , Células HeLa , Oxitiamina/farmacologia , Oxitiamina/química , Oxitiamina/metabolismo , Tiamina/farmacologia , Tiamina/análogos & derivados , Tiamina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Simulação por Computador
19.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542498

RESUMO

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Assuntos
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacologia , Camellia sinensis/metabolismo , Folhas de Planta/metabolismo , Chá/química
20.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473739

RESUMO

A healthy vaginal microbiota hosts Lactobacillus as the most predominant genus. Lactobacilli play a role in human health through the production of diverse antimicrobial substances that can act against human pathogens or modulate the immune system. Previous reports highlighted the ability of vaginal lactobacilli to counteract viruses causing STIs, e.g., HIV-1 and HSV-2. In this report, we analyze the activity of supernatants of vaginal lactobacilli against HSV-1 infection, which is becoming increasingly relevant as a STI. We show that the supernatants of two vaginal Lactobacillus species (i.e., L. crispatus and L. gasseri) were active at neutralizing HSV-1 infection in two different cell lines of human and simian origin. Specifically, we demonstrate that L. crispatus strains are the most effective in antiviral activity, as evidenced by the comparison with a vaginal pathogen taken as reference. The effect was specific and not attributable to the generic toxicity of the supernatants to the cells. Our results pave the way for the development of probiotics to limit the impact of HSV-1 infection on women's health.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Feminino , Humanos , Lactobacillus , Vagina , Técnicas de Cultura de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA