Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Mol Life Sci ; 81(1): 347, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136782

RESUMO

CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.


Assuntos
Síndromes Epilépticas , Células-Tronco Pluripotentes Induzidas , Neurônios , Proteínas Serina-Treonina Quinases , Espasmos Infantis , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fosforilação , Síndromes Epilépticas/metabolismo , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Espasmos Infantis/metabolismo , Espasmos Infantis/genética , Espasmos Infantis/patologia
2.
Glia ; 72(6): 1117-1135, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38450767

RESUMO

Williams syndrome (WS) is a genetic neurodevelopmental disorder caused by a heterozygous microdeletion, characterized by hypersociability and unique neurocognitive abnormalities. Of the deleted genes, GTF2I has been linked to hypersociability in WS. We have recently shown that Gtf2i deletion from forebrain excitatory neurons, referred to as Gtf2i conditional knockout (cKO) mice leads to multi-faceted myelination deficits associated with the social behaviors affected in WS. These deficits were potentially mediated also by microglia, as they present a close relationship with oligodendrocytes. To study the impact of altered myelination, we characterized these mice in terms of microglia over the course of development. In postnatal day 30 (P30) Gtf2i cKO mice, cortical microglia displayed a more ramified state, as compared with wild type (controls). However, postnatal day 4 (P4) microglia exhibited high proliferation rates and an elevated activation state, demonstrating altered properties related to activation and inflammation in Gtf2i cKO mice compared with control. Intriguingly, P4 Gtf2i cKO-derived microglial cells exhibited significantly elevated myelin phagocytosis in vitro compared to control mice. Lastly, systemic injection of clemastine to P4 Gtf2i cKO and control mice until P30, led to a significant interaction between genotypes and treatments on the expression levels of the phagocytic marker CD68, and a significant reduction of the macrophage/microglial marker Iba1 transcript levels in the cortex of the Gtf2i cKO treated mice. Our data thus implicate microglia as important players in WS, and that early postnatal manipulation of microglia might be beneficial in treating inflammatory and myelin-related pathologies.


Assuntos
Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Síndrome de Williams , Camundongos , Animais , Microglia , Síndrome de Williams/genética , Neurônios/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
3.
Mod Pathol ; 36(2): 100008, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853782

RESUMO

Micronodular thymoma with lymphoid stroma is a rare thymic neoplasm characterized by discrete nodules of epithelial tumor cells separated by abundant lymphoid stroma. The genetic features of micronodular thymoma with lymphoid stroma remain largely unexplored. Owing to the interference of abundant intratumoral, nonneoplastic lymphoid cells, a highly sensitive approach is necessary to study genetic changes in these tumors. In this study, we used a highly sensitive next-generation sequencing assay using the molecular barcoding Ion AmpliSeq HD technology to study the most commonly mutated genes in thymomas, including GTF2I, HRAS, NRAS, KRAS, and TP53. A total of 12 cases of micronodular thymomas with lymphoid stroma were tested, and 2 cases also had areas of type A thymoma in their tumor bed. Two micronodular thymic carcinomas with lymphoid stroma, a histological mimic of micronodular thymoma, were also included for comparison. Recurrent p.L424H mutations in GTF2I were found in all the cases of micronodular thymoma with lymphoid stroma but not in the cases of micronodular thymic carcinomas. In addition, 3 cases of micronodular thymoma with lymphoid stroma also had concomitant HRAS and/or KRAS mutations. Our study showed that p.L424H mutations in GTF2I is a constant genetic feature of micronodular thymoma with lymphoid stroma. This finding strongly suggests that micronodular thymoma with lymphoid stroma is closely related to type A and AB thymomas because they all share p.L424H mutations in GTF2I.


Assuntos
Timoma , Neoplasias do Timo , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Humanos , Timoma/genética , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias do Timo/genética , Mutação , Fatores de Transcrição TFII/genética
4.
Pathol Int ; 73(7): 265-280, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278579

RESUMO

Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Humanos , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Timo/patologia
5.
BMC Genomics ; 23(1): 656, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114454

RESUMO

BACKGROUND: General transcription factor IIi (GTF2I) mutations are very common in thymic epithelial tumors (TETs) and are related to a more favorable prognosis in TET patients. However, limited research has been conducted on the role of GTF2I in the tumor immune microenvironment (TIME). Further, long non-coding RNAs (lncRNAs) have been associated with the survival of patients with TETs. Therefore, this study aimed to explore the relationship between GTF2I mutations and TIME and build a new potential signature for predicting tumor recurrence in the TETs. Research data was downloaded from The Cancer Genome Atlas database and the CIBERSORT algorithm was used to evaluate TIME differences between GTF2I mutant and wild-type TETs. Relevant differentially expressed lncRNAs based on differentially expressed immune-related genes were identified to establish lncRNA pairs. We constructed a signature using univariate and multivariate Cox regression analyses. RESULTS: GTF2I is the most commonly mutated gene in TETs, and is associated with an increased number of early-stage pathological types, as well as no history of myasthenia gravis or radiotherapy treatment. In the GTF2I wild-type group, immune score and immune cell infiltrations with M2 macrophages, activated mast cells, neutrophils, plasma, T helper follicular cells, and activated memory CD4 T cells were higher than the GTF2I mutant group. A risk model was built using five lncRNA pairs, and the 1-, 3-, and 5-year area under the curves were 0.782, 0.873, and 0.895, respectively. A higher risk score was related to more advanced histologic type. CONCLUSION: We can define the GTF2I mutant-type TET as an immune stable type and the GTF2I wild-type as an immune stressed type. A signature based on lncRNA pairs was also constructed to effectively predict tumor recurrence.


Assuntos
Neoplasias Epiteliais e Glandulares , RNA Longo não Codificante , Fatores Genéricos de Transcrição , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Recidiva Local de Neoplasia/genética , Neoplasias Epiteliais e Glandulares/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Timo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Microambiente Tumoral
6.
Int Immunol ; 33(8): 423-434, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34036345

RESUMO

Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation with lymphoid infiltration and destruction of the salivary glands. Although many genome-wide association studies have revealed disease-associated risk alleles, the functions of the majority of these alleles are unclear. Here, we show previously unrecognized roles of GTF2I molecules by using two SS-associated single nucleotide polymorphisms (SNPs), rs73366469 and rs117026326 (GTF2I SNPs). We found that the risk alleles of GTF2I SNPs increased GTF2I expression and enhanced nuclear factor-kappa B (NF-κB) activation in human salivary gland cells via the NF-κB p65 subunit. Indeed, the knockdown of GTF2I suppressed inflammatory responses in mouse endothelial cells and in vivo. Conversely, the over-expression of GTF2I enhanced NF-κB reporter activity depending on its p65-binding N-terminal leucine zipper domain. GTF2I is highly expressed in the human salivary gland cells of SS patients expressing the risk alleles. Consistently, the risk alleles of GTF2I SNPs were strongly associated with activation of the IL-6 amplifier, which is hyperactivation machinery of the NF-κB pathway, and lymphoid infiltration in the salivary glands of SS patients. These results demonstrated that GTF2I expression in salivary glands is increased in the presence of the risk alleles of GTF2I SNPs, resulting in activation of the NF-κB pathway in salivary gland cells. They also suggest that GTF2I could be a new therapeutic target for SS.


Assuntos
Inflamação/genética , Polimorfismo de Nucleotídeo Único/genética , Glândulas Salivares/patologia , Síndrome de Sjogren/genética , Fatores de Transcrição TFII/genética , Adulto , Idoso , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Células Cultivadas , Células Endoteliais/patologia , Células Epiteliais/patologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/genética , Transdução de Sinais/genética
7.
Cancer Cell Int ; 19: 84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30992691

RESUMO

BACKGROUND: GTF2I-RARA is a newly identified RARA fusion gene in variant acute promyelocytic leukemia (APL) patients with t(7;17)(q11;q21). Clinical manifestation in the patient showed that it is a sort of ATRA-insensitive oncogene and is different from the classic PML-RARA in terms of therapeutic reaction. METHODS: To reveal the functional characteristics and regulating mechanism of the GTF2I-RARA fusion gene, we established a GTF2I-RARA-transfected HL60 cell model and examined its sensitivity to ATRA by western blot, MTT assay, flow cytometry, and Wright-Giemsa staining. Coimmunoprecipitation and confocal microscopy were used to examine the binding of GTF2I-RARA and transcriptional corepressors. We also performed ChIP-seq to search for potential target genes. Immunoprecipitation, ubiquitination assay, western blot, luciferase assay, and real-time PCR were used to analyze the effects of RNF8 on RARA. Flow cytometry and Wright-Giemsa staining were used to study the effect of MG132 and ATRA on the GTF2I-RARA-transfected HL60 cell model. RESULT: We confirmed resistance of GTF2I-RARA to ATRA. Compared with PML-RARA, GTF2I-RARA has a higher affinity to HDAC3 under ATRA treatment. Using the ChIP-sequencing approach, we identified 221 GTF2I-RARA binding sites in model cells and found that the RING finger protein 8 (RNF8) is a target gene of GTF2I-RARA. RNF8 participates in disease progression and therapy resistance in APL with the GTF2I-RARA transcript. Elevated RNF8 expression promotes the interaction between RARA and RNF8 and induces RARA Lys-48 linkage ubiquitylation and degradation, resulting in attenuated transcriptional activation of RARA. CONCLUSION: Our results suggest that RNF8 is a key GTF2I-RARA downstream event. Using the combination of MG132 and ATRA to treat GTF2I-RARA-HL60 cells, a synergistic effect leading to GTF2I-RARA-HL60 cell differentiation was confirmed. Taken together, the targeting of RNF8 may be an alternative choice for treatment in variant APL with GTF2I-RARA fusion.

8.
Zhonghua Zhong Liu Za Zhi ; 41(12): 918-922, 2019 Dec 23.
Artigo em Chinês | MEDLINE | ID: mdl-31874549

RESUMO

Objective: To investigate the expression level of antisense transcript of pseudogene, general transcription factor Ⅱi psedugen23 (GTF2IP23), in breast cancer and its effect on the host gene general transcription factor Ⅱi (GTF2I). Methods: The expressions of GTF2IP23 and GTF2I were detected in 40 cases of invasive breast cancer tumors and their counterparts by using quantitative real-time polymerase chain reaction (qRT-PCR). The effects of GTF2IP23 on the expression of GTF2I gene and cell proliferation and migration were analyzed by overexpression of GTF2IP23 in breast cancer cells. Results: The expression of GTF2IP23 mRNA in breast cancer tissues was significantly higher than that in adjacent tissues (P<0.001), while the expression of GTF2I mRNA was significantly lower than that in adjacent tissues (P=0.007). The expression of GTF2IP23 was negatively correlated with GTF2I (r=-0.335, P=0.025). The expression of GTF2IP23 in breast cancer cells was significantly higher than in normal breast cells (P<0.01), while GTF2I expression in breast cancer cells was significantly lower than that in normal breast cells (P<0.01). Overexpression of GTF2IP23 in ZR-75-30 cells significantly reduced the expression of GTF2I (P=0.034) and enhanced cell proliferation (P=0.017) and migration (P=0.026) capacity. Conclusions: GTF2IP23 is distinctly upregulated in breast cancer, it inhibits the expression of real gene GTF2I and promotes the proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama/sangue , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Fatores de Transcrição TFII/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Musculares/genética , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase em Tempo Real , Transativadores/genética , Fatores de Transcrição TFII/metabolismo
9.
Vestn Oftalmol ; 135(5. Vyp. 2): 254-259, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31691669

RESUMO

The article reviews literature on relationships between polymorphic variants of the genes THBS1, GTF2I, MUC1, TRIM21, STAT4, PTPN22 with clinical features of dry keratoconjunctivitis in rheumatoid arthritis and Sjogren's syndrome. The development and implementation of a method for analyzing polymorphic gene variants used to diagnose dry keratoconjunctivitis in rheumatoid arthritis and Sjogren's syndrome will allow assessment of the possibility of developing dry keratoconjunctivitis and/or its progression in patients with autoimmune diseases or in people at risk. Determination of clinical and morphological regularities of dry keratoconjunctivitis in accordance with the revealed molecular and genetic changes will contribute to better understanding of the etiology and pathogenesis of ophthalmological manifestations of autoimmune diseases, and will also help improve the diagnostics and prognosis of dry keratoconjunctivitis.


Assuntos
Artrite Reumatoide , Ceratoconjuntivite , Síndrome de Sjogren , Biomarcadores , Humanos , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 22
10.
Mol Cell Probes ; 40: 45-51, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29305905

RESUMO

Williams syndrome (WS) is a neurodevelopmental disorder involving hemideletion of as many as 26-28 genes, resulting in a constellation of unique physical, cognitive and behavior phenotypes. The haploinsufficiency effect of each gene has been studied and correlated with phenotype(s) using several models including WS subjects, animal models, and peripheral cell lines. However, links for most of the genes to WS phenotypes remains unclear. Among those genes, general transcription factor 2I (GTF2I) is of particular interest as its haploinsufficiency is possibly associated with hypersociability in WS. Here, we describe studies of atypical WS cases as well as mouse models focusing on GTF2I that support a role for this protein in the neurocognitive and behavioral profiles of WS individuals. We also review collective studies on diverse molecular functions of GTF2I that may provide mechanistic explanation for phenotypes recently reported in our relevant cellular model, namely WS induced pluripotent stem cell (iPSC)-derived neurons. Finally, in light of the progress in gene-manipulating approaches, we suggest their uses in revealing the neural functions of GTF2I in the context of WS.


Assuntos
Haploinsuficiência/genética , Fatores de Transcrição TFII/genética , Síndrome de Williams/genética , Animais , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Biológicos
11.
Biol Lett ; 13(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28424317

RESUMO

The neurohormone oxytocin plays a central role in human social behaviour and cognition, and oxytocin dysregulation may contribute to psychiatric disorders. However, genetic factors influencing individual variation in the oxytocinergic system remain poorly understood. We genotyped 169 healthy adults for a functional polymorphism in GTF2I (general transcription factor II-I), a gene associated with high prosociality and reduced social anxiety in Williams syndrome, a condition reported to involve high oxytocin levels and reactivity. Participants' salivary oxytocin levels were measured before and after watching a validated empathy-inducing video. Oxytocin reactivity, defined as pre- to post-video percentage change in salivary oxytocin, varied substantially and significantly between individuals with different GTF2I genotypes, with, additionally, a trend towards an interaction between genotype and sex. Individuals with more oxytocin-reactive genotypes also reported significantly lower social anxiety. These findings suggest a model whereby GTF2I has a continuum of effects on human sociality, from the extreme social phenotypes and oxytocin dysregulation associated with gene deletion in Williams syndrome, to individual differences in oxytocin reactivity and sociality associated with common polymorphisms in healthy populations.


Assuntos
Ansiedade/genética , Ocitocina/metabolismo , Medo , Genótipo , Humanos , Comportamento Social , Síndrome de Williams/genética
12.
Genesis ; 54(7): 407-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194223

RESUMO

The multifunctional transcription factor TFII-I encoded by the Gtf2i gene is expressed at the two-cell stage, inner cell mass, trophectoderm, and early gastrula stages of the mouse embryo. In embryonic stem cells, TFII-I colocalizes with bivalent domains and depletion of Gtf2i causes embryonic lethality, neural tube closure, and craniofacial defects. To gain insight into the function of TFII-I during late embryonic and postnatal stages, we have generated a conditional Gtf2i null allele by flanking exon 3 with loxP sites. Crossing the floxed line with the Hprt-Cre transgenic mice resulted in inactivation of Gtf2i in one-cell embryo. The Cre-mediated deletion of exon 3 recapitulates a genetic null phenotype, indicating that the conditional Gtf2i line is a valuable tool for studying TFII-I function during embryonic development. genesis 54:407-412, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição TFII/biossíntese , Animais , Blastocisto/metabolismo , Embrião de Mamíferos , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Fenótipo , Fatores de Transcrição TFII/genética
13.
J Neurochem ; 134(3): 578-89, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913238

RESUMO

General transcription factor II-I (Gtf2i) is a transcription factor and one of the genes implicated in Willams-Beuren syndrome, an autism spectrum disorder. In this study, we investigated splice variants of the Gtf2i gene in both the 5'untranslated region (5'UTR) and the coding region. To search for novel 5'UTRs of Gtf2i, we utilized the cap analysis gene expression database of the mouse. We identified seven novel Gtf2i transcripts with alternatively spliced 5'UTRs in the rat brain. We also identified four novel splice variants in the coding sequence of Gtf2i. Furthermore, we identified a selective usage of certain types of 5'UTR by coding variants. In situ hybridization demonstrated a differential pattern of expression of Gtf2i mRNAs with alternatively spliced 5'UTRs among neuronal cells, and the localization of one of the variants in neuronal dendrites in the rat brain. Immunohistochemistry also demonstrated a distribution of Gtf2i-immunoreactivity in the dendrites. These results suggest multiple pathways of expression of Gtf2i gene in the brain. The expression patterns may be under the control of alternative promoters coupled to the alternative splicing in the coding region. Differential localization of mRNA to neuronal dendrites suggests spatiotemporal-specific translation at the post-synaptic sites that is involved in transfer of synaptic activity to expression of specific sets of genes in the nucleus. Gtf2i is a transcription factor and implicated in Willams-Beuren syndrome. We identified seven novel Gtf2i transcripts with alternatively spliced 5'UTRs in the rat brain. In situ hybridization demonstrated a differential expression of Gtf2i mRNAs with different 5'UTRs in somas and dendrites of neuronal cells. Differential localization of mRNA to neuronal dendrites suggests spatiotemporal-specific translation at the postsynaptic sites. The scheme shows genomic structure showing the positions of the potential transcription start tags (rDEC695, rDEC3D7, rDEC1D3, rDEC104, rDEC072 and rDEBE25). Newly identified exons (1.1-1.6) are shown with the white boxes. The distances from rDEC695-5'end are indicated in bp.


Assuntos
Regiões 5' não Traduzidas/genética , Processamento Alternativo/genética , Encéfalo/metabolismo , Dendritos/metabolismo , Fatores de Transcrição TFII/genética , Animais , Western Blotting , Imuno-Histoquímica , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Neurônios/metabolismo , Isoformas de Proteínas/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Am J Med Genet A ; 167A(12): 3011-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26333423

RESUMO

In Potocki-Shaffer syndrome (PSS), the full phenotypic spectrum is manifested when deletions are at least 2.1 Mb in size at 11p11.2. The PSS-associated genes EXT2 and ALX4, together with PHF21A, all map to this region flanked by markers D11S1393 and D11S1319. Being proximal to EXT2 and ALX4, a 1.1 Mb region containing 12 annotated genes had been identified by deletion mapping to explain PSS phenotypes except multiple exostoses and parietal foramina. Here, we report a male patient with partial PSS phenotypes including global developmental delay, craniofacial anomalies, minor limb anomalies, and micropenis. Using microarray, qPCR, RT-qPCR, and Western blot analyses, we refined the candidate gene region, which harbors five genes, by excluding two genes, SLC35C1 and CRY2, which resulted in a corroborating role of PHF21A in developmental delay and craniofacial anomalies. This microdeletion contains the least number of genes at 11p11.2 reported to date. Additionally, we also discuss the phenotypes observed in our patient with respect to those of published cases of microdeletions across the Potocki-Shaffer interval.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Deleção de Genes , Histona Desacetilases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Deleção Cromossômica , Transtornos Cromossômicos/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 11/genética , Anormalidades Craniofaciais/etiologia , Deficiências do Desenvolvimento/etiologia , Exostose Múltipla Hereditária/genética , Face/anormalidades , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase em Tempo Real
16.
Hepatol Int ; 18(2): 509-516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37713154

RESUMO

AIMS: Aimed to identify a new susceptibility gene associated with primary biliary cholangitis (PBC) in Chinese Han and investigate the possible mechanism of that gene in PBC. METHODS: A total of 466 PBC and 694 healthy controls (HC) were included in our study, and genotyping GTF2I gene variants by Sequenom. CD19 + B cells were isolated for Chromatin immunoprecipitation sequencing (ChIP-seq). Additionally, MEME-ChIP was utilized to perform searches for known motifs and de novo motif discovery. The GTF2I ChIP-seq of hematopoietic cell line (K562) results were obtained from ENCODE (GSE176987, GSE177691). The Genomic HyperBrowser was used to determine overlap and hierarchal clustering between ours and ENCODE datasets. RESULTS: The frequency of the rs117026326 variant T allele was significantly higher in PBC patients than that in HC (20.26% compared with 13.89%, Pc = 1.09E-04). Furthermore, we observed an elevated proportion of GTF2I binding site located in the upstream and 5' UTR of genes in PBC in comparison with HC. Additionally, an in-depth analysis of IL21R region revealed that GTF2I might bind to the IL21R promoter to regulate the expression of the IL21R, with four peaks of GTF2I binding sites, including three increased binding sites in upstream, one increased binding site in 5' UTR. Motif analysis by MEME-ChIP uncovered five significant motifs. A significant overlap between our ChIP and GSE176987, GSE17769 were found by the Genomic HyperBroswer. CONCLUSIONS: Our study confirmed that GTF2I was associated with PBC in Chinese Han. Furthermore, our gene function analysis indicated that IL21R may be the target gene regulated by GTF2I.


Assuntos
Cirrose Hepática Biliar , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Humanos , Regiões 5' não Traduzidas , China , Sequenciamento de Cromatina por Imunoprecipitação , Cirrose Hepática Biliar/genética , Receptores de Interleucina-21/genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFIII/genética
17.
Redox Biol ; 77: 103361, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39317105

RESUMO

KRAS is among the most commonly mutated oncogenes in human malignancies. Although the advent of sotorasib and adagrasib, has lifted the "undruggable" stigma of KRAS, the resistance to KRAS inhibitors quickly becomes a major issue. Here, we reported that aldehyde dehydrogenase 1 family member A1 (ALDH1A1), an enzyme in retinoic acid biosynthesis and redox balance, increases in response to KRAS inhibitors and confers resistance in a range of cancer types. KRAS inhibitors' efficacy is significantly improved in sensitive or drug-resistant cells, patient-derived organoids (PDO), and xenograft models by ALDH1A1 knockout, loss of enzyme function, or inhibitor. Furthermore, we discovered that ALDH1A1 suppresses the efficacy of KRAS inhibitors by counteracting ferroptosis. ALDH1A1 detoxicates deleterious aldehydes, boosts the synthesis of NADH and retinoic acid (RA), and improves RARA function. ALDH1A1 also activates the CREB1/GPX4 pathway, stimulates the production of lipid droplets in a pH-dependent manner, and subsequently prevents ferroptosis induced by KRAS inhibitors. Meanwhile, we established that GTF2I is dephosphorylated at S784 via ERK by KRAS inhibitors, which hinders its nuclear translocation and mediates ALDH1A1's upregulation in response to KRAS inhibitors. In summary, the results offer valuable insights into targeting ALDH1A1 to enhance the effectiveness of KRAS-targeted therapy through ferroptosis in cancer treatment.

18.
Cell Rep ; 43(3): 113867, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416640

RESUMO

Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.


Assuntos
Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Neurônios/metabolismo , Comportamento Social , Fenótipo , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo
19.
Front Oncol ; 13: 1224491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671056

RESUMO

Background: Thymic epithelial tumors are rare malignant neoplasms that are frequently associated with paraneoplastic syndromes, especially myasthenia gravis. GTF2I is an oncogene mutated in a subgroup of thymomas that is reputed to drive their growth. However, for GTF2I wild-type tumors, the relevant mutations remain to be identified. Methods: We performed a meta-analysis and identified 4,208 mutations in 339 patients. We defined a panel of 63 genes frequently mutated in thymic epithelial tumors, which we used to design a custom assay for next-generation sequencing. We sequenced tumor DNA from 67 thymomas of patients with myasthenia gravis who underwent resection in our institution. Results: Among the 67 thymomas, there were 238 mutations, 83 of which were in coding sequences. There were 14 GTF2I mutations in 6 A, 5 AB, 2 B2 thymomas, and one in a thymoma with unspecified histology. No other oncogenes showed recurrent mutations, while sixteen tumor suppressor genes were predicted to be inactivated. Even with a dedicated assay for the identification of specific somatic mutations in thymic epithelial tumors, only GTF2I mutations were found to be significantly recurrent. Conclusion: Our evaluation provides insights into the mutational landscape of thymic epithelial tumors, identifies recurrent mutations in different histotypes, and describes the design and implementation of a custom panel for targeted resequencing. These findings contribute to a better understanding of the genetic basis of thymic epithelial tumors and may have implications for future research and treatment strategies.

20.
Front Med ; 17(6): 1186-1203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37707678

RESUMO

Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Neoplasias da Glândula Tireoide , Fatores de Transcrição TFIII , Camundongos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Nus , Transição Epitelial-Mesenquimal , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Vesículas Extracelulares/patologia , Fatores de Transcrição TFIII/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA