Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Biochem Biophys Res Commun ; 729: 150344, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38976946

RESUMO

Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic ß-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.

2.
Ecotoxicol Environ Saf ; 271: 115965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244513

RESUMO

Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.


Assuntos
Herbicidas , Exposição Ocupacional , Animais , Glifosato , Glicina/toxicidade , Eixo Encéfalo-Intestino , Acetilcolinesterase , Herbicidas/toxicidade , Sistema Nervoso
3.
Int J Neurosci ; : 1-7, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38606533

RESUMO

OBJECTIVE: To investigate the impact of gut microbiota dysbiosis on neurodevelopment in children. METHODS: This study included 338 children aged 0-3 years admitted to our hospital from January to December 2022, The children were divided into a normal neurodevelopment group (169 cases) and a poor neurodevelopment group (169 cases). Basic personal information and clinical data were collected through a detailed questionnaire, and the microbial composition in fecal samples was analyzed using 16S rRNA gene sequencing. RESULTS: Children in the poor neurodevelopment group showed a significant decrease in gut microbiota diversity compared to those in the normal neurodevelopment group (Shannon index, p < 0.05). The abundance of Bifidobacterium and Veillonella genera significantly decreased (p < 0.05), while the abundance of Streptococcus genus increased significantly (p < 0.05). CONCLUSION: There is an association between gut microbiota dysbiosis and poor neurodevelopment in children. The increased abundance of Streptococcus genus and decreased abundance of Bifidobacterium and Veillonella genera in the gut microbiota may be potential risk factors for poor neurodevelopment in preterm infants. Future research should further explore the potential beneficial effects of gut microbiota modulation on neurodevelopment in children.

4.
Mol Med ; 29(1): 122, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684563

RESUMO

BACKGROUND: Children of mothers with gestational diabetes mellitus (GDM) are more prone to acquire type 2 diabetes and obesity as adults. Due to this link, early intervention strategies that alter the gut microbiome may benefit the mother and kid long-term. This work uses metagenomic and transcriptome sequencing to investigate how probiotics affect gut microbiota dysbiosis and inflammation in GDM. METHODS: GDM and control metagenomic sequencing data were obtained from the SRA database. This metagenomic data helped us understand gut microbiota abundance and function. KEGG detected and extracted functional pathway genes. Transcriptome sequencing data evaluated GDM-related gene expression. Finally, GDM animal models were given probiotics orally to evaluate inflammatory response, regulatory immune cell fractions, and leptin protein levels. RESULTS: GDM patients had more Fusobacteria and Firmicutes, while healthy people had more Bacteroidetes. Gut microbiota composition may affect GDM by altering the L-aspartate and L-asparagine super pathways. Mannan degradation and the super pathway of L-aspartate and L-asparagine synthesis enhanced in GDM mice with leptin protein overexpression. Oral probiotics prevent GDM by lowering leptin. Oral probiotics increased Treg, Tfr, and Breg cells, which decreased TNF-α and IL-6 and increased TGF-ß and IL-10, preventing inflammation and preserving mouse pregnancy. CONCLUSION: Dysbiosis of the gut microbiota may increase leptin expression and cause GDM. Oral probiotics enhance Treg, Tfr, and Breg cells, which limit the inflammatory response and assist mice in sustaining normal pregnancy. Thus, oral probiotics may prevent GDM, enabling targeted gut microbiota modulation and maternal and fetal health.


Assuntos
Linfócitos B Reguladores , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Feminino , Gravidez , Humanos , Animais , Camundongos , Asparagina , Ácido Aspártico , Disbiose , Leptina , Linfócitos T Reguladores , Inflamação
5.
BMC Microbiol ; 23(1): 143, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208622

RESUMO

BACKGROUND: Mounting evidence indicates that the gut microbiome (GMB) plays an essential role in kidney stone (KS) formation. In this study, we conducted a systematic review and meta-analysis to compare the composition of gut microbiota in kidney stone patients and healthy individuals, and further understand the role of gut microbiota in nephrolithiasis. RESULTS: Six databases were searched to find taxonomy-based comparison studies on the GMB until September 2022. Meta-analyses were performed using RevMan 5.3 to estimate the overall relative abundance of gut microbiota in KS patients and healthy subjects. Eight studies were included with 356 nephrolithiasis patients and 347 healthy subjects. The meta-analysis suggested that KS patients had a higher abundance of Bacteroides (35.11% vs 21.25%, Z = 3.56, P = 0.0004) and Escherichia_Shigella (4.39% vs 1.78%, Z = 3.23, P = 0.001), and a lower abundance of Prevotella_9 (8.41% vs 10.65%, Z = 4.49, P < 0.00001). Qualitative analysis revealed that beta-diversity was different between the two groups (P < 0.05); Ten taxa (Bacteroides, Phascolarctobacterium, Faecalibacterium, Flavobacterium, Akkermansia, Lactobacillus, Escherichia coli, Rhodobacter and Gordonia) helped the detection of kidney stones (P < 0.05); Genes or protein families of the GMB involved in oxalate degradation, glycan synthesis, and energy metabolism were altered in patients (P < 0.05). CONCLUSIONS: There is a characteristic gut microbiota dysbiosis in kidney stone patients. Individualized therapies like microbial supplementation, probiotic or synbiotic preparations and adjusted diet patterns based on individual gut microbial characteristics of patients may be more effective in preventing stone formation and recurrence.


Assuntos
Microbioma Gastrointestinal , Cálculos Renais , Simbióticos , Humanos , Cálculos Renais/microbiologia , Flavobacterium , Disbiose/microbiologia
6.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298553

RESUMO

Gut microbiota comprises the microbial communities inhabiting our gastrointestinal (GI) tracts. Accordingly, these complex communities play a fundamental role in many host processes and are closely implicated in human health and diseases. Sleep deprivation (SD) has become increasingly common in modern society, partly owing to the rising pressure of work and the diversification of entertainment. It is well documented that sleep loss is a significant cause of various adverse outcomes on human health including immune-related and metabolic diseases. Furthermore, accumulating evidence suggests that gut microbiota dysbiosis is associated with these SD-induced human diseases. In this review, we summarize the gut microbiota dysbiosis caused by SD and the succedent diseases ranging from the immune system and metabolic system to various organs and highlight the critical roles of gut microbiota in these diseases. The implications and possible strategies to alleviate SD-related human diseases are also provided.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Disbiose/complicações , Privação do Sono/complicações , Trato Gastrointestinal/metabolismo
7.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686011

RESUMO

Idiopathic toe walking (ITW) occurs in about 5% of children. Orthopedic treatment of ITW is complicated by the lack of a known etiology. Only half of the conservative and surgical methods of treatment give a stable positive result of normalizing gait. Available data indicate that the disease is heterogeneous and multifactorial. Recently, some children with ITW have been found to have genetic variants of mutations that can lead to the development of toe walking. At the same time, some children show sensorimotor impairment, but these studies are very limited. Sensorimotor dysfunction could potentially arise from an imbalanced production of neurotransmitters that play a crucial role in motor control. Using the data obtained in the studies of several pathologies manifested by the association of sensory-motor dysfunction and intestinal dysbiosis, we attempt to substantiate the notion that malfunction of neurotransmitter production is caused by the imbalance of gut microbiota metabolites as a result of dysbiosis. This review delves into the exciting possibility of a connection between variations in the microbiome and ITW. The purpose of this review is to establish a strong theoretical foundation and highlight the benefits of further exploring the possible connection between alterations in the microbiome and TW for further studies of ITW etiology.


Assuntos
Microbioma Gastrointestinal , Humanos , Criança , Disbiose , Fatores de Risco , Marcha , Dedos do Pé
8.
Calcif Tissue Int ; 110(2): 225-235, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480200

RESUMO

Gut microbiota (GM) dysbiosis is closely related to several metabolic diseases such as hypertension, obesity, and Alzheimer's disease. However, little is known about the causal relationship between GM dysbiosis and osteoporosis. In our work, 32 3-month-old female SD rats were randomly divided into two groups: the fecal microbiota transplantation (FMT) group and the control group. The supernatant of feces from senile osteoporotic rats was transplanted to the FMT group and the same amount of sterile saline was given to the control rats. After 12 and 24 weeks, all rats were sacrificed, and the serum, bone, fecal feces, and intestine tissue were collected for the subsequent analysis. The osteocalcin (OC), CTX, and P1NP of the FMT group increased significantly at 12 and 24 weeks compared with the control group (P < 0.05). Furthermore, the BV, BV/TV, Tb.N, and Tb.Th decreased significantly in the FMT group (P < 0.05). The alpha diversity (ACE, Chao) of the FMT group was higher than the control at 24 weeks (P < 0.05). The beta diversity was close between the FMT rats and the donor rats. In addition, GM from donor rats changed the GM composition and function of the FMT rats, which was similar to that of the donor rats at 24 weeks. The impaired intestinal structure and the decreased expression of occludin, claudin, and ZO-1 were found in FMT rats. In conclusion, GM dysbiosis by transferring the feces from senile osteoporotic rats to young rats could induce osteoporosis. The changed GM and the impaired intestinal barrier contributed to the pathogenesis of osteoporosis.


Assuntos
Microbioma Gastrointestinal , Osteoporose , Animais , Disbiose , Transplante de Microbiota Fecal , Feminino , Ratos , Ratos Sprague-Dawley
9.
BMC Womens Health ; 22(1): 437, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348390

RESUMO

BACKGROUND: Gut microbes were closely related to women's health. Previous studies reported that the gut microbes of premenopausal women were different from those of postmenopausal women. However, little was known about the relationship between gut microbiota dysbiosis and menopausal syndrome (MPS). The aim of this study was to explore the relationship between MPS and gut microbes. METHODS: Patients with MPS (P group, n = 77) and healthy women (H group, n = 24) at menopause were recruited in this study. The stool specimen and clinical parameters (demographic data, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), et al) of participants' were collected. We evaluated the differences in gut microbes by 16S ribosomal RNA gene sequencing. We used LEfSe to identify gut microbes with varying abundances in different groups. The Spearman correlation coefficients of clinical parameters and gut microbes were calculated. PICRUSt was used to predict the potential KEGG Ortholog functional profiles of microbial communities. RESULTS: The abundance of 14 species differed substantially between the MPS and menopausal healthy women (LDA significance threshold > 2.0) according to LEfSe analysis. Using Spearman's correlation analysis, it was discovered that E2 had a positive correlation with Aggregatibacter segnis, Bifidobacterium animalis, Acinetobacter guillouiae (p < 0.05, these three species were enriched in menopausal healthy women), while FSH and LH had a negative correlation with them (p < 0.05). KEGG level3 metabolic pathways relevant to cardiovascular disease and carbohydrate metabolism were enriched in the MPS (p < 0.05), according to functional prediction by PICRUST and analyzed by Dunn test. CONCLUSION: There was gut microbiota dysbiosis in MPS, which is reflected in the deficiency of the abundance of Aggregatibacter segnis, Bifidobacterium animalis and Acinetobacter guillouiae related to the level of sex hormones. In MPS individuals, species with altered abundances and unique functional pathways were found.


Assuntos
Disbiose , Microbioma Gastrointestinal , Humanos , Feminino , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Hormônio Luteinizante , Hormônio Foliculoestimulante , Menopausa
10.
Ecotoxicol Environ Saf ; 241: 113809, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068740

RESUMO

Microplastics (MPs) are a new kind of environmental pollutant that has attracted extensive attention in recent years. MPs can be ingested by multiple organisms and mainly accumulate in the intestine. However, there is still little known about the toxic effects of MPs on humans. Here, we chose the male adult mice as the research model, which were exposed to 2 µm polyvinyl chloride (PVC) MPs at a concentration of 100 mg/kg for consecutive 60 days, to study the toxicity of PVC-MPs. The changes in gut histology, enzymatic biomarkers, the intestinal microbiome, and metabolomic responses were monitored in mice. The results displayed that the PVC-MPs reduced intestinal mucus secretion and increased intestinal permeability. Moreover, PVC-MPs exposure decreased mRNA expression levels of colonic mucus secretion-related genes, indicating dysfunction of intestinal mucus secretion after exposure to PVC-MPs. With regard to the gut microbiota, high throughput sequencing of the full-length 16S rRNA gene sequencing indicated 15 and 17 kinds of gut microbes changed markedly after PVC-MPs exposure at the genus and species level, respectively. Furthermore, marked alterations in the gut microbiome and fecal metabolic profiles were observed, most of which were related to intestinal injury and barrier dysfunction. These results show that exposure to PVC-MPs leads to intestinal injury and changes gut microbiome composition and metabolome profiles, thus the health risk of PVC-MPs to animals needs more concern. This study helps to provide a new idea about the health risk of PVC-MPs to humans.


Assuntos
Doenças Metabólicas , Microbiota , Animais , Disbiose/induzido quimicamente , Humanos , Masculino , Camundongos , Microplásticos , Plásticos/toxicidade , Cloreto de Polivinila , RNA Ribossômico 16S
11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887386

RESUMO

Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.


Assuntos
Microbioma Gastrointestinal , Terapia com Luz de Baixa Intensidade , Insuficiência Renal Crônica , Disbiose , Humanos , Inflamação , Diálise Renal , Insuficiência Renal Crônica/radioterapia
12.
J Transl Med ; 19(1): 317, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301274

RESUMO

BACKGROUND: Constipation is a common gastrointestinal dysfunction which has a potential impact on people's immune state and their quality of life. Here we investigated the effects of constipation on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS: Constipation was induced by loperamide in female C57BL/6 mice. The alternations of gut microbiota, permeability of intestinal barrier and blood-brain barrier, and histopathology of colon were assessed after constipation induction. EAE was induced in the constipation mice. Fecal microbiota transplantation (FMT) was performed from constipation mice into microbiota-depleted mice. Clinical scores, histopathology of inflammation and demyelination, Treg/Th17 and Treg17/Teff17 imbalance both in the peripheral lymphatic organs and central nervous system, cytokines include TGF-ß, GM-CSF, IL-10, IL-17A, IL-17F, IL-21, IL-22, and IL-23 in serum were assessed in different groups. RESULTS: Compared with the vehicle group, the constipation mice showed gut microbiota dysbiosis, colon inflammation and injury, and increased permeability of intestinal barrier and blood-brain barrier. We found that the clinical and pathological scores of the constipation EAE mice were severer than that of the EAE mice. Compared with the EAE mice, the constipation EAE mice showed reduced percentage of Treg and Treg17 cells, increased percentage of Th17 and Teff17 cells, and decreased ratio of Treg/Th17 and Treg17/Teff17 in the spleen, inguinal lymph nodes, brain, and spinal cord. Moreover, the serum levels of TGF-ß, IL-10, and IL-21 were decreased while the GM-CSF, IL-17A, IL-17F, IL-22, and IL-23 were increased in the constipation EAE mice. In addition, these pathological processes could be transferred via their gut microbiota. CONCLUSIONS: Our results verified that constipation induced gut microbiota dysbiosis exacerbated EAE via aggravating Treg/Th17 and Treg17/Teff17 imbalance and cytokines disturbance in C57BL/6 mice.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Animais , Constipação Intestinal , Citocinas , Disbiose/complicações , Encefalomielite Autoimune Experimental/complicações , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Qualidade de Vida , Células Th17
13.
FASEB J ; 34(5): 6837-6853, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32223025

RESUMO

Whether myogenesis is affected by the maternal gut dysbacteriosis still remains ambiguous. In this study, first we show the elevated level of lipopolysaccharides (LPS) in a gut microbiota dysbiosis mouse model. Second, we demonstrate that the diameter of muscle fibers, limb development, and somitogenesis were inhibited in both the gut microbiota dysbiosis and LPS exposed mice and chicken embryos. These might be due to LPS disturbed the cell survival and key genes which regulate the somitogenesis and myogenesis. RNA sequencing and subsequent validation experiments verified that retinoic acid (RA) signaling perturbation was mainly responsible for the aberrant somite formation and differentiation. Subsequently, we found that LPS-induced reactive oxygen species (ROS generation and antioxidant genes such as Nrf2, AKR1B10) contributed to the above -mentioned interference with RA signaling. These findings highlight that the gut microbiota homeostasis is also involved in regulating the development of muscle progenitor cells during pregnancy.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Desenvolvimento Muscular/efeitos dos fármacos , Músculos/patologia , Células-Tronco/patologia , Tretinoína/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Embrião de Galinha , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
14.
Pharmacol Res ; 167: 105543, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711435

RESUMO

In this study, we identified elevated levels of LPS and suppressed neurogenesis in a successfully established mouse model of gut microbiota dysbiosis. We mimicked these phenotypes using mouse and chicken embryos exposed to LPS and found that dramatic variation in gene expression was due to changes in the dorsal-ventral patterning of the neural tube. Cell survival and excess ROS were also involved in this process. Antioxidant administration alleviated LPS-activated NF-κB signaling, while directly blocking NF-κB signaling altered the LPS-induced inhibition of neurogenesis. Furthermore, IL-6 was proven to play a vital role in the expression of crucial neurogenesis-related genes and NF-κB. In summary, we found that the suppression of neurogenesis induced by dysbacteriosis-derived LPS was significantly reversed in mice with fecal microbiota transplantation. This study reveals that gut dysbacteriosis-derived LPS impairs embryonic neurogenesis, and that the NF-κB/IL-6 pathway could be one of the main factors triggering the downstream signaling cascade.


Assuntos
Disbiose/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , NF-kappa B/imunologia , Neurogênese , Transdução de Sinais , Animais , Embrião de Galinha , Disbiose/fisiopatologia , Disbiose/terapia , Transplante de Microbiota Fecal , Feminino , Masculino , Camundongos Endogâmicos C57BL
15.
BMC Gastroenterol ; 21(1): 359, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600475

RESUMO

BACKGROUND: Activation of Adenosine 5'-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the mechanism. METHODS: SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intestinal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 pathway and gut barrier indicators were investigated. RESULTS: SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal permeability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and the activated AMPKα/SIRT1 signaling. CONCLUSIONS: The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by activating the AMPKα/SIRT1 signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células CACO-2 , Dieta Hiperlipídica , Humanos , Camundongos , Nitroprussiato/farmacologia , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
16.
Digestion ; 102(4): 508-515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32932258

RESUMO

BACKGROUND: The gut microbiota is a diverse community of microbes that maintain the stability of the intestinal environment. Dysbiosis of the gut microbiota has been linked to gastrointestinal diseases, such as colorectal cancer (CRC) - a leading cause of death for cancer patients. SUMMARY: Candidate pathogens have been identified using bacterial culture and high-throughput sequencing techniques. Currently, there is evidence to show that specific intestinal microbes drive CRC development and progression, yet their pathogenic mechanisms are still unclear. Key Messages: In this review, we describe the known healthy gut microbiota and its changes in CRC. We especially focus on exploring the pathogenic mechanisms of gut microbiota dysbiosis in CRC. This is crucial for explaining how gut microbiota dysbiosis drives the process of colorectal carcinogenesis and tumor progression. Evaluation of changes in the gut microbiota during CRC development and progression offers a new strategy for the diagnosis and treatment of this disease.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Carcinogênese , Neoplasias Colorretais/etiologia , Disbiose/complicações , Humanos , Intestinos
17.
Microb Pathog ; 142: 104062, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32058024

RESUMO

Pneumonia is the leading cause of morbidity and mortality in children under five years of age worldwide. Over the past decades, studies have shown that the upper respiratory pathogens are closely related to the occurrence of pneumonia. However, the co-occurrence of gut microbiome dysbiosis may have clinical manifestation in the prognosis of childhood pneumonia. The aim of the present study is to investigate the differences in gut microbial communities between children's diagnosed community-acquired pneumonia (CAP) under five compared to healthy controls in Inner Mongolia. Fecal samples were collected from children with CAP and healthy controls (<5 years old) and the genomic microbiome 16S rRNA was amplified using the hypervariable V4 region and subjected to MiSeq Illumina sequencing, and then analyzed for microbiota composition and phenotype. Finally functional profiling was performed by KEGG pathways analyses. Our results revealed a gut microbiota dysbiosis in children with CAP. Distinct gut microbiome composition and structure were associated with childhood CAP between two age categories compared to healthy controls. In addition, the phylogenic phenotype's prediction was found to be significantly different between the groups. The prominent genera in age group of 0-3 were Bifidobacterium and Enterococcus. On the contrary, Escherichia-Shigella, Prevotella, Faecalibacterium and Enterobacter were remarkably decreased in most of the fecal samples from CAP patients in age group of 0-3 compared to the control. At the genus level, the CAP children in the age group of 4-5 showed an increase in the abundance of Escherichia/Shigella, Bifidobacterium, Streptococcus and Psychrobacter and, a decrease in the abundance of Faecalibacterium, Bacteroides, Lachnospiraceae and Ruminococcus compared with the matched healthy controls. Moreover, CAP children in both age groups exhibited distinct profiles in the KEGG functional analysis. Our data revealed that the gut microbiota differ between CAP patients and health children and certain gut microbial species are associated with CAP. Further research to identify specific microbial species which may contribute to the development CAP are merited. In addition, rectification of microbiota dysbiosis may provide supplemental benefits for treatment of the childhood CAP.

18.
BMC Nephrol ; 21(1): 97, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169051

RESUMO

BACKGROUND: Growing evidence has shown that the gut-renal connection and gut microbiota dysbiosis play a critical role in immunoglobulin A nephropathy (IgAN). However, the fecal microbiome profile in Chinese patients with IgAN remains unknown. A cross-sectional study was designed for the first time to investigate the fecal microbiota compositions in patients with primary IgAN in China and to evaluate the relationship between the fecal microbiome and IgAN clinical presentation. METHODS: Fecal samples were collected from 17 IgAN patients and 18 age-, sex-, and body mass index-matched healthy controls, and bacterial DNA was extracted for 16S ribosomal RNA gene sequencing targeting the V3-V4 region. RESULTS: Fecal samples from the IgAN patients and healthy controls showed differences in gut microbiota community richness and compositions. Compared to the healthy controls, IgAN patients at the phylum level had an increased abundance of Fusobacteria, but a decreased abundance of Synergistetes. The significantly increased genera in the IgAN group were Escherichia-Shigella, Hungatella, and Eggerthella, all of which possess pathogenic potential. Furthermore, the genus Escherichia-Shigella was negatively associated with the estimated glomerular filtration rate (eGFR) but was positively associated with the urinary albumin-to-creatinine ratio (uACR). However, the genus rectale_group was present in the IgAN group with a low abundance and was negatively associated with the uACR. Functional analysis disclosed that infection-related pathways were enriched in the IgAN group. CONCLUSIONS: We demonstrate that gut microbiota dysbiosis occurs in patients with IgAN, and that changes in gut bacterial populations are closely related to IgAN clinical features, suggesting that certain specific gut microbiota may be a potential therapeutic target for IgAN.


Assuntos
Povo Asiático , Fezes/microbiologia , Microbioma Gastrointestinal , Glomerulonefrite por IGA/etnologia , Glomerulonefrite por IGA/microbiologia , Adulto , Albuminúria/urina , Bactérias/genética , Bactérias/isolamento & purificação , Creatinina/urina , Estudos Transversais , Feminino , Microbioma Gastrointestinal/genética , Taxa de Filtração Glomerular , Glomerulonefrite por IGA/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
19.
J Pineal Res ; 67(1): e12574, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30929267

RESUMO

Intestinal diseases caused by sleep deprivation (SD) are severe public health threats worldwide. This study focuses on the effect of melatonin on intestinal mucosal injury and microbiota dysbiosis in sleep-deprived mice. Mice subjected to SD had significantly elevated norepinephrine levels and decreased melatonin content in plasma. Consistent with the decrease in melatonin levels, we observed a decrease of antioxidant ability, down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines in sleep-deprived mice, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, expression of MUC2 and tight junction proteins and elevated expression of ATG5, Beclin1, p-P65 and p-IκB. High-throughput pyrosequencing of 16S rRNA demonstrated that the diversity and richness of the colonic microbiota were decreased in sleep-deprived mice, especially in probiotics, including Akkermansia, Bacteroides and Faecalibacterium. However, the pathogen Aeromonas was markedly increased. By contrast, supplementation with 20 and 40 mg/kg melatonin reversed these SD-induced changes and improved the mucosal injury and dysbiosis of the microbiota in the colon. Our results suggest that the effect of SD on intestinal barrier dysfunction might be an outcome of melatonin suppression rather than a loss of sleep per se. SD-induced intestinal barrier dysfunction involved the suppression of melatonin production and activation of the NF-κB pathway by oxidative stress.


Assuntos
Colo , Microbioma Gastrointestinal/imunologia , Enteropatias , Mucosa Intestinal , Melatonina/imunologia , Privação do Sono , Animais , Colo/imunologia , Colo/microbiologia , Enteropatias/imunologia , Enteropatias/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Probióticos , Privação do Sono/imunologia , Privação do Sono/microbiologia
20.
J Transl Med ; 16(1): 353, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545398

RESUMO

BACKGROUND: Neurogenic bowel dysfunction (NBD) is a major physical and psychological problem in patients with spinal cord injury (SCI), and gut dysbiosis is commonly occurs in SCI. Here, we document neurogenic bowel management of male patients with chronic traumatic complete SCI in our centre and perform comparative analysis of the gut microbiota between our patients and healthy males. METHODS: A total of 43 male patients with chronic traumatic complete SCI (20 with quadriplegia and 23 with paraplegia) and 23 healthy male adults were enrolled. Clinical data and fresh stool specimens were collected from all participants. Face-to-face interviews were conducted to survey the neurogenic bowel management of 43 patients with SCI. Gut microbiomes were analysed by sequencing of the V3-V4 region of the 16S rRNA gene. RESULTS: NBD was common in adult male patients with chronic traumatic complete SCI. Patients with quadriplegia exhibited a longer time to defecate than did those with paraplegia and had higher NBD scores and heavier neurogenic bowel symptoms. The diversity of the gut microbiota in the SCI group was reduced, and the structural composition was different from that of the healthy adult male group. The abundance of Veillonellaceae and Prevotellaceae increased, while Bacteroidaceae and Bacteroides decreased in the SCI group. The abundance of Bacteroidaceae and Bacteroides in the quadriplegia group and Acidaminococcaceae, Blautia, Porphyromonadaceae, and Lachnoclostridium in the paraplegia group were significantly higher than those in the healthy male group. Serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time and COURSE had significant correlations with microbial community structure. Microbial community structure was significantly associated with serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time, and COURSE. CONCLUSIONS: This study presents a comprehensive landscape of the gut microbiota in adult male patients with chronic traumatic complete SCI and documents their neurogenic bowel management. Gut microbiota dysbiosis in SCI patients was correlated with serum biomarkers and NBD symptoms.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal , Traumatismos da Medula Espinal/microbiologia , Ferimentos e Lesões/microbiologia , Adulto , Biodiversidade , Biomarcadores/sangue , Doença Crônica , Humanos , Masculino , Intestino Neurogênico/complicações , Intestino Neurogênico/microbiologia , Paraplegia/complicações , Paraplegia/microbiologia , Filogenia , Quadriplegia/complicações , Quadriplegia/microbiologia , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/complicações , Ferimentos e Lesões/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA