Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chem Eng J ; 405: 126893, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901196

RESUMO

The unprecedented global spread of the severe acute respiratory syndrome (SARS) caused by SARS-CoV-2 is depicting the distressing pandemic consequence on human health, economy as well as ecosystem services. So far novel coronavirus (CoV) outbreaks were associated with SARS-CoV-2 (2019), middle east respiratory syndrome coronavirus (MERS-CoV, 2012), and SARS-CoV-1 (2003) events. CoV relates to the enveloped family of Betacoronavirus (ßCoV) with positive-sense single-stranded RNA (+ssRNA). Knowing well the persistence, transmission, and spread of SARS-CoV-2 through proximity, the faecal-oral route is now emerging as a major environmental concern to community transmission. The replication and persistence of CoV in the gastrointestinal (GI) tract and shedding through stools is indicating a potential transmission route to the environment settings. Despite of the evidence, based on fewer reports on SARS-CoV-2 occurrence and persistence in wastewater/sewage/water, the transmission of the infective virus to the community is yet to be established. In this realm, this communication attempted to review the possible influx route of the enteric enveloped viral transmission in the environmental settings with reference to its occurrence, persistence, detection, and inactivation based on the published literature so far. The possibilities of airborne transmission through enteric virus-laden aerosols, environmental factors that may influence the viral transmission, and disinfection methods (conventional and emerging) as well as the inactivation mechanism with reference to the enveloped virus were reviewed. The need for wastewater epidemiology (WBE) studies for surveillance as well as for early warning signal was elaborated. This communication will provide a basis to understand the SARS-CoV-2 as well as other viruses in the context of the environmental engineering perspective to design effective strategies to counter the enteric virus transmission and also serves as a working paper for researchers, policy makers and regulators.

2.
Saudi Pharm J ; 29(7): 656-669, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34400859

RESUMO

Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new "personalized medicines" and "pharmacogenetics" for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies-for ER+ ductal breast cancer-on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.

3.
Br J Nutr ; 118(1): 41-52, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28797310

RESUMO

The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.


Assuntos
Metabolismo Energético , Ácidos Graxos/efeitos adversos , Lactação , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Mitocôndrias/metabolismo , Ácidos Graxos trans/efeitos adversos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Óleos de Plantas , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Respiração , Ácidos Graxos trans/metabolismo , Triglicerídeos/sangue
4.
Saudi Pharm J ; 25(3): 319-331, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28344485

RESUMO

Around the world, species from the genus Tilia are commonly used because of their peripheral and central medicinal effects; they are prepared as teas and used as tranquilizing, anticonvulsant, and analgesic agents. In this study, we provide evidence of the protective effects of organic and aqueous extracts (100 mg/kg, i.p.) obtained from the leaves of Tilia americana var. mexicana on CCl4-induced liver and brain damage in the rat. Protection was observed in the liver and brain (cerebellum, cortex and cerebral hemispheres) by measuring the activity of antioxidant enzymes and levels of malondialdehyde (MDA) using spectrophotometric methods. Biochemical parameters were also assessed in serum samples from the CCl4-treated rats. The T. americana var. mexicana leaf extracts provided significant protection against CCl4-induced peripheral and central damage by increasing the activity of antioxidant enzymes, diminishing lipid peroxidation, and preventing alterations in biochemical serum parameters, such as the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-globulin (γ-GLOB), serum albumin (ALB), total bilirubin (BB), creatinine (CREA) and creatine kinase (CK), relative to the control group. Additionally, we correlated gene expression with antioxidant activity in the experimental groups treated with the organic and aqueous Tilia extracts and observed a non-statistically significant positive correlation. Our results provide evidence of the underlying biomedical properties of T. americana var. mexicana that confer its neuro- and hepatoprotective effects.

5.
Saudi J Biol Sci ; 30(1): 103495, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36439959

RESUMO

Background: There is need to investigate whether phytochemicals along with surgical detorsion could serve as better managements options in TT patients rather than surgical detorsion (SD) alone. Methods: The descriptive cross-sectional part of this study is questionnaire-based addressing sociodemographic characteristics of participants and their experience in management of TT. In the experimental part, male rats (n = 32) were grouped into: sham, Ischemia-reperfusion injury (IRI), dichloromethane (DCM) and ethanol fraction (100 mg/kg) of CO. Evaluation of tissue GPx, total thiol, SOD, MDA and H2O2 was done. Serum estimations of nitrite, TNF-α and IL-6, MPO, sperm motility, count and viability was also carried out. Tissue expression of bax and caspase 3 was assessed. Results: 68.9 % respondents agreed that SD alone is non-effective in the management of TT while 83.6 % reported a need to augment surgery with medications. Oxidative stress markers like H2O2, MDA and nitrite increased by IRI were decreased in post-treatment groups, along with a significant increase in the tissue level of GSH, GST, SOD, GPx, and total thiol. Inflammatory mediators were elevated in IRI while post-treatment rats showed significant decrease. IRI decreased sperm count significantly this was reversed by post-treatment. Bax and caspase 3 was increased in IRI rats and post-treatment with CO fractions reduced them. Conclusions: Quantitative cross-sectional study has revealed through experience of clinicians that surgical detorsion alone is not effective in managing TT. Augmented treatment with CO leaf fractions suppressed testicular IRI through inhibition of pro-apoptotic proteins expression, oxidative stress and inflammation.

6.
J Bone Oncol ; 39: 100472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36876225

RESUMO

Background: Osteosarcoma is most prevalently found primary malignant bone tumors, with primary metastatic patients accounting for approximately 25% of all osteosarcoma patients, yet their 5-year OS remains below 30%. Bilirubin plays a key role in oxidative stress-associated events, including malignancies, making the regulation of its serum levels a potential anti-tumor strategy. Herein, we investigated the association of osteosarcoma prognosis with serum levels of TBIL, IBIL and DBIL, and further explored the mechanisms by which bilirubin affects tumor invasion and migration. Methods: ROC curve was plotted to assess survival conditions based on the determined optimal cut-off values and the AUC. Then, Kaplan-Meier curves, along with Cox proportional hazards model, was applied for survival analysis. Inhibitory function of IBIL on the malignant properties of osteosarcoma cells was examined using the qRT-PCR, transwell assays, western blotting, and flow cytometry. Results: We found that, versus osteosarcoma patients with pre-operative higher IBIL (>8.9 µmol/L), those with low IBIL (≤8.9 µmol/L) had shorter OS and PFS. As indicated by the Cox proportional hazards model, pre-operative IBIL functioned as an independent prognostic factor for OS and PFS in total and gender-stratified osteosarcoma patients (P < 0.05 for all). In vitro experiments further confirmed that IBIL inhibits PI3K/AKT phosphorylation and downregulates MMP-2 expression via reducing intracellular ROS, thereby decreasing the invasion of osteosarcoma cells. Conclusions: IBIL may serve as an independent prognostic predictor for osteosarcoma patients. IBIL impairs invasion of osteosarcoma cells through repressing the PI3K/AKT/MMP-2 pathway by suppressing intracellular ROS, thus inhibiting its metastatic potential.

7.
Front Plant Sci ; 13: 924064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909771

RESUMO

The ELO family is involved in synthesizing very-long-chain fatty acids (VLCFAs) and VLCFAs play a crucial role in plant development, protein transport, and disease resistance, but the physiological function of the plant ELO family is largely unknown. Further, while nitric oxide synthase (NOS)-like activity acts in various plant environmental responses by modulating nitric oxide (NO) accumulation, how the NOS-like activity is regulated in such different stress responses remains misty. Here, we report that the yeast mutant Δelo3 is defective in H2O2-triggered cell apoptosis with decreased NOS-like activity and NO accumulation, while its Arabidopsis homologous gene ELO2 (ELO HOMOLOG 2) could complement such defects in Δelo3. The expression of this gene is enhanced and required in plant osmotic stress response because the T-DNA insertion mutant elo2 is more sensitive to the stress than wild-type plants, and ELO2 expression could rescue the sensitivity phenotype of elo2. In addition, osmotic stress-promoted NOS-like activity and NO accumulation are significantly repressed in elo2, while exogenous application of NO donors can rescue this sensitivity of elo2 in terms of germination rate, fresh weight, chlorophyll content, and ion leakage. Furthermore, stress-responsive gene expression, proline accumulation, and catalase activity are also repressed in elo2 compared with the wild type under osmotic stress. In conclusion, our study identifies ELO2 as a pivotal factor involved in plant osmotic stress response and reveals its role in regulating NOS-like activity and NO accumulation.

8.
Food Chem X ; 14: 100301, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35469313

RESUMO

Phomopsis longanae Chi is a crucial pathogen causing fruit spoilage in postharvest fresh longan. The influence of P. longanae invasion with a suspension containing 1 × 104 P. longanae spores per mL on the breakdown occurrence and ROS metabolism in pulp of longan cv. Fuyan during storage at 28 °C was explicated. Compared to control group, more severe development of pulp breakdown (PB), higher PB index, O2 -. generation rate, H2O2 and MDA content, but lower SOD, APX and CAT activities, GSH, AsA, flavonoid and total phenolics amounts, ability of scavenging DPPH radical, and reducing power were displayed in the pulp of P. longanae-infected fruit during days 0-5. In this context, P. longanae induced breakdown of longan pulp by reducing the scavenging ability of ROS and increasing the cumulation of ROS, thereby enhancing the structural collapse and lipid peroxidation of cell membrane, which were responsible for the PB of harvested longans.

9.
Carbohydr Polym ; 281: 119020, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074102

RESUMO

Amniotic membrane (AM) has been utilized as a wound dressing extensively. Given the importance of oxygen in wound healing, here we have reported the fabrication and characterization of an oxygen-generating wound dressing based on AM. This construct was composed of H2O2-loaded polylactic acid (PLA) microparticles embedded within a chitosan/ß-glycerophosphate (ß-GP) thermosensitive hydrogel covered with a layer of decellularized human-AM. The microparticles had a diameter of 4.48 ± 1.8 µm, an encapsulation efficiency of 44.172 ± 4.49%, and generated oxygen for at least 7 days. The hybrid construct was formed at 32.4 ± 2 °C, had a porous structure (84.69 ± 8.34%) with a pore size of 46.72 ± 26.21 µm. The hydrogel/dAM extract was non-toxic after 7 days based on our MTT results, and the final composite supported cell growth and adhesion. This sample had the most negligible blood cell adhesion with less than 5% hemolysis. Our results indicate the proposed structure's desirable biological, chemical, and physical properties as an active wound dressing.


Assuntos
Quitosana , Hidrogéis , Âmnio , Bandagens , Quitosana/química , Humanos , Hidrogéis/química , Peróxido de Hidrogênio , Oxigênio
10.
Mater Today Bio ; 13: 100177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34938991

RESUMO

Spinal cord injury (SCI) causes secondary injury, accompanied by pathological changes such as oxidative stress, inflammation and neuronal apoptosis. This leads to permanent disabilities such as paralysis and loss of movement or sensation. Due to the ineffectiveness of drugs passing through the blood spinal cord barrier (BSCB), there is currently no effective treatment for SCI. The aim of this experiment was to design plasma complex component functionalized manganese-doped silica nanoparticles (PMMSN) with a redox response as a targeted drug carrier for resveratrol (RES), which effectively transports insoluble drugs to cross the BSCB. RES was adsorbed into PMMSN with a particle size of approximately 110 â€‹nm by the adsorption method, and the drug loading reached 32.61 â€‹± â€‹3.38%. The RES release results for the loaded sample (PMMSN-RES) showed that the PMMSN-RES exhibited a release slowly effect. In vitro and vivo experiments demonstrated that PMMSN-RES decreased reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, reduced the expression of inflammatory (TNF-α, IL-1ß and IL-6) and apoptotic cytokines (cleaved caspase-3) in spinal cord tissue after SCI. In summary, PMMSN-RES may be a potential pharmaceutical preparation for the treatment of SCI by reducing neuronal apoptosis and inhibiting inflammation caused by reducing oxidative stress to promote the recovery of mouse motor function.

11.
Saudi Dent J ; 34(3): 237-242, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35136326

RESUMO

BACKGROUND: Previous studies have demonstrated that SARS-CoV-2 is mainly transmitted by inhalation of aerosols and can remain viable in the air for hours. Viruses can spread in dental settings and put professionals and patients at high risk of infection due to proximity and aerosol-generating procedures, and poor air ventilation. OBJECTIVES: The aim of this study was to investigate the effects of a 1% hydrogen peroxide (H2O2) mouth rinse on reducing the intraoral SARS-CoV-2 load. METHODS: Portable air cleaners with HEPA filters exposed for 3 months were analysed to test for virus presence in a waiting room (where patients wore a face mask but did not undergo mouth rinsing) and three treatment rooms (where patients wore no mask but carried out mouth rinsing). As CO2 is co-exhaled with aerosols containing SARS-CoV-2 by COVID-19 infected people, we also measured CO2 as a proxy of infection risk indoors. Specific primer and probe RT-PCR were applied to detect viral genomes of the SARS-CoV-2 virus in the filters. Specifically, we amplified the nucleocapsid gene (Nuclv) of SARS-CoV-2. RESULTS: CO2 levels ranged from 860 to 907 ppm, thus indicating low ventilation and the risk of COVID-19 transmission. However, we only found viral load in filters from the waiting room and not from the treatment rooms. The results revealed the efficiency of 1-minute mouth rinsing with 1% H2O2 since patients rinsed their mouths immediately after removing their mask in the treatment rooms. CONCLUSIONS: Our findings suggest that dental clinics would be safer and more COVID-19 free by implementing mouth rinsing 1 min with 1% H2O2 immediately after the patients arrive at the clinic.

12.
Saudi J Biol Sci ; 29(6): 103307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35602869

RESUMO

Malathion (MAL) is an organophosphate insecticide that disrupts the body's antioxidant system; it is one of the earliest organophosphate insecticides extensively used as dust, emulsion, and vapor control a wide variety of insect pests under different conditions. This experimentation aims to evaluate the influence of Arabica coffee oil and olive oil on MAL-induced nephrotoxicity in male rat. 6 sets bearing the same number of animals were applied to this experiment. Each set comprised 10 rats. The first set of rats was used as the control group; rats in the second set were exposed to MAL measured at 100 mg/kg body weight for 7 weeks. Animals in the third and fourth set were treated with 400 mg/kg body weight of Arabica coffee oil and olive oil, and 100 mg/kg body weight of MAL. The fifth, together with the sixth set, were fed with a similar proportion of Arabica coffee oil and olive oil as administered to the third set of rats. After the experimental duration, rats of group 2 showed severe biochemical alterations, including significant increases of creatinine, uric acids, and urea nitrogen (BUN), resulting in marked decreases in serum albumin values and total protein (TP). Severe histopathological and immunohistochemical alterations of kidney tissues were observed in exposed MAL-intoxicated rats. Administration of these oils reduced the detected biochemical, histopathological modifications caused by MAL intoxication. Two active ingredients in Arabica coffee oil (oleic acid) and olive oil (hydroxytyrosol) showed good cyclooxygenase-2 (COX 2) interaction. Moreover, oleic acid from coffee oil and olive oil exhibited impressive association with xanthine oxidase (XO). The current finding showed that coffee oil and olive oil could be appraised as possible and a likely deterrence component against nephrotoxicity brought about by MAL.

13.
Saudi Dent J ; 34(3): 167-193, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35125835

RESUMO

OBJECTIVE: This systematic review aimed to evaluate the antiviral effect of mouthwashes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). MATERIAL AND METHODS: An electronic search was performed on PubMed, Scopus, Web of Science, Cochrane Library, LILACS, ProQuest, and Google Scholar, and was complemented by a manual search. Both clinical and in vitro studies that focused on the antiviral effect of mouthwashes against SARS-CoV-2 were included. Risk of bias assessment was performed only on the clinical studies using the RoB-2 and ROBINS-I tools. RESULTS: A total of 907 records were found; after initial selection by title and abstract, 33 full-text articles were selected to be evaluated for eligibility. Finally, a total of 27 studies were included for the qualitative synthesis, including 16 in vitro studies and 11 clinical trials. Antiviral effects were evaluated separately for the in vitro and clinical studies. In vitro studies included mouthwashes containing hydrogen peroxide, chlorhexidine digluconate, povidone-iodine, essential oils, cetylpyridinium chloride, and other compounds; in vivo studies included mouthwashes containing hydrogen peroxide, chlorhexidine digluconate, povidone-iodine, cetylpyridinium chloride, essential oils, chlorine dioxide, ß-cyclodextrin-citrox, and sorbitol with xylitol. Povidone-iodine, cetylpyridinium chloride, and essential oils were effective in vitro, while hydrogen peroxide, chlorhexidine digluconate, povidone-iodine, cetylpyridinium chloride, ß-cyclodextrin-citrox, and sorbitol with xylitol were effective in vivo. Unclear or high risk of bias was found for almost all clinical studies, and only one study presented with a low risk of bias. No further quantitative analysis was performed. CONCLUSION: Although povidone-iodine, cetylpyridinium chloride, and essential oils may be an alternative to reduce the viral load in vitro and in vivo, more studies are needed to determine the real antiviral effect of these different mouthwashes against SARS-CoV-2.This work was not funded. The protocol was registered in PROSPERO (identification number: CRD42021236134).

14.
Ophthalmol Sci ; 2(1): 100107, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36246185

RESUMO

Purpose: To identify racial differences of oxidative damage and stress and mitochondrial function in human trabecular meshwork (TM). Design: Experimental study. Participants: One hundred seventy-three eyes of 173 patients undergoing intraocular surgery provided aqueous humor (AH) for analysis. Trabecular meshwork tissues from eye bank donors were used as healthy controls for primary cell culture. Methods: Enzyme-linked immunosorbent assay methods were used to measure 8-hydroxy-2-deoxyguanosine (8-OHdG), an oxidative damage marker, in AH comparing Black and White Americans. Human TM primary cultured cells from Black and White donors were used for adenosine triphosphate (ATP) measurement under high and low oxygen culture conditions. Complex I activity was measured in mitochondrial fractions isolated from cultured TM cells. Mitochondrial quantification was performed by translocase of outer mitochondrial membrane 20 (TOMM20) Western blot. Intracellular reactive oxygen species (ROS) production was measured in live TM cells. Main Outcome Measures: Oxidative damage in AH, ATP production, complex I activity, mitochondrial quantification, and intracellular ROS in cultured TM cells stratified by racial background. Results: Aqueous humor samples (75 Black, 98 White) displayed significantly higher 8-OHdG levels (P = 0.024) in Black compared with White patients with severe stage glaucoma. Using cultured healthy donor TM cells, ATP production was higher in Black than White TM cells (P = 0.002) in low oxygen culture conditions. Complex I activity was not statistically different in Black compared with White TM cells, but TOMM20 expression was higher in Black versus White cells (P = 0.001). In response to hydrogen peroxide challenge, ROS production was significantly higher in Black compared to White TM cells (P = 0.004). Conclusions: Significantly higher 8-OHdG levels in AH of Black compared with White patients with severe glaucoma indicated that oxidative damage may be a risk factor in glaucoma pathogenesis or the result of distinct pathologic features in the Black population. To identify potential origins or causes of this damage, our data showed that healthy Black cultured TM cells have higher ATP and ROS levels, with increased quantity of mitochondria, compared with White TM cells. These findings indicate that mitochondrial alterations and increased oxidative stress may influence racial disparities of glaucoma.

15.
Food Chem X ; 14: 100348, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35663601

RESUMO

Compared with the P. longanae-infected longan, the DNP-treated P. longanae-infected fruit represented a higher pulp breakdown index, a higher O2 -. production rate, and a higher MDA content, but the lower activities of APX, SOD and CAT, the lower transcript levels of DlAPX6, DlSOD1, DlSOD2, DlSOD3 and DlCAT1, the lower values of AsA, GSH, flavonoid and total phenolics, a lower scavenging ability of DPPH radical, and a lower value of reducing power. Whereas, the ATP-treated P. longanae-infected samples showed the contrary results. The above findings indicated that the DNP-promoted the pulp breakdown in P. longanae-infected longan was because DNP weakened the capacity of scavenging ROS, raised the O2 -. level, and accelerated the membrane lipids peroxidation. However, the ATP-suppressed the pulp breakdown in P. longanae-infected longan was because ATP improved the capacity of scavenging ROS, reduced the O2 -. level, and reduced the membrane lipids peroxidation.

16.
Saudi J Biol Sci ; 29(5): 3890-3898, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844407

RESUMO

Products containing Silver nanoparticles (Ag NPs) are becoming vastly used in our daily life. The widespread increased introduction of Ag NPs in many aspects of life has raised researchers' concerns regarding their safety and toxicity for biological and environmental life in the past few years. The current study aimed to explore the subsequent effects of Ag NPs withdrawal, following short-term oral administration. Eighteen rats were assigned randomly into three groups (control group "1" and AG NPs treated groups "2" and "3"; 6 animals each). The control group received normal food and tap water while groups 2 & 3 received 0.5 ml of a solution containing 25 ppm Ag NPs for 14 days. Group 2 rats were sacrificed on day 14 whereas group 3 was left for another 14 days of particle cessation followed by euthanasia on day 28. Functional assessment was done by liver enzyme assays, hydrogen peroxide activity, hepatic Bdnf expression, and P53 immunoreactivity. Hepatic tissue structural assessment was done via hematoxylin and eosin, periodic acid-Schiff as well as Masson's trichrome stains. The results revealed a significant elevation of Hydrogen peroxide in group 2 only compared to the control group. Hepatic Bdnf and liver enzymes were both insignificantly affected. Structural abnormalities and enhanced apoptosis in hepatic tissue were found 14 days after ceasing the nanoparticles. In conclusion: Structural and functional insults following Ag NPs oral administration continues after particle withdrawal, and interestingly they do not necessitate apparent reflection on liver enzyme assays.

17.
Biochem Biophys Rep ; 29: 101213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128081

RESUMO

Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.

18.
Saudi J Biol Sci ; 29(3): 1842-1852, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35280527

RESUMO

The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25-25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.

19.
J Clin Exp Hepatol ; 12(6): 1492-1513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340300

RESUMO

Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.

20.
Environ Exp Bot ; 71(2): 292-297, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32287506

RESUMO

Houttuynia cordata Thunb. is an edible herb with a variety of pharmacological activities, but only limited information is available about its response towards potassium supplementation. Sterile plantlets were cultured in media with different potassium levels, and parameters related to growth, foliar potassium, water and chlorophyll contents, photosynthesis, transpiration, H2O2 contents and antioxidative enzyme activities were determined after a month. Results showed that 1.28 mM potassium was the optimum for H. cordata as highest values of dry weight, shoot height, root length and number were obtained at this concentration. The optimum potassium concentration resulted in the maximum net photosynthetic rate which could be associated with the highest chlorophyll content rather than limited stomatal conductance. The supply of surplus potassium resulted in higher content of foliar potassium, but negatively correlated with the biomass. Both potassium starvation (0 mM) and high potassium (>1.28 mM) could lead to water loss through high transpiration rate and low water absorption, respectively, and resulted in H2O2 accumulation and increased activities of catalase and peroxidase, which suggested induction of oxidative stress. Moreover, H. cordata showed the minimum of H2O2 content and the maximum of superoxide dismutase activity on 1.28 mM potassium, implying its role in inducing tolerance against oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA