Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837439

RESUMO

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Assuntos
Diferenciação Celular , Histonas , Mioblastos , Piruvato Quinase , Animais , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Camundongos , Fosforilação , Histonas/metabolismo , Histonas/genética , Mioblastos/metabolismo , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a Hormônio da Tireoide , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Isoenzimas/metabolismo , Isoenzimas/genética
2.
Mol Cell ; 65(6): 1081-1095.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28286024

RESUMO

We investigated the relationship among ERK signaling, histone modifications, and transcription factor activity, focusing on the ERK-regulated ternary complex factor family of SRF partner proteins. In MEFs, activation of ERK by TPA stimulation induced a common pattern of H3K9acS10ph, H4K16ac, H3K27ac, H3K9acK14ac, and H3K4me3 at hundreds of transcription start site (TSS) regions and remote regulatory sites. The magnitude of the increase in histone modification correlated well with changes in transcription. H3K9acS10ph preceded the other modifications. Most induced changes were TCF dependent, but TCF-independent TSSs exhibited the same hierarchy, indicating that it reflects gene activation per se. Studies with TCF Elk-1 mutants showed that TCF-dependent ERK-induced histone modifications required Elk-1 to be phosphorylated and competent to activate transcription. Analysis of direct TCF-SRF target genes and chromatin modifiers confirmed this and showed that H3S10ph required only Elk-1 phosphorylation. Induction of histone modifications following ERK stimulation is thus directed by transcription factor activation and transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histonas/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ativação Enzimática , Camundongos , Camundongos Knockout , Mutação , Fosforilação , Interferência de RNA , Fator de Resposta Sérica/genética , Transdução de Sinais , Fatores de Transcrição TCF/genética , Acetato de Tetradecanoilforbol/farmacologia , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos , Transfecção , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
3.
Ann Bot ; 133(3): 435-446, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38127060

RESUMO

BACKGROUND AND AIMS: Dogroses (Rosa sect. Caninae) are mostly pentaploid, bearing 2n = 5x = 35 chromosomes in somatic cells. They evolved a unique form of asymmetrical meiosis characterized by two types of chromosomes: (1) chromosomes forming bivalents and distributed in the normal sexual way; and (2) chromosomes occurring as univalents and transferred by a female gamete only. In the mature pollen of pentaploid species, seven bivalent-derived chromosomes are transmitted to offspring, and 21 unpaired univalent chromosomes are eliminated during microsporogenesis. To discriminate between bivalent- and univalent-forming chromosomes, we studied histone H3 phosphorylation patterns regulating meiotic chromosome condensation and segregation. METHODS: We analysed histone modification patterns during male canina meiosis in two representative dogrose species, 5x Rosa canina and 5x Rosa rubiginosa, by immunohistochemical and molecular cytogenetics approaches. Immunostaining of meiotic cells included α-tubulin, histone H3 phosphorylation (H3S10p, H3S28p and H3T3p) and methylation (H3K4me3 and H3K27me3) marks. In addition, fluorescent in situ hybridization was carried out with an 18S rDNA probe. KEY RESULTS: In the first meiotic division, univalent chromosomes underwent equational division into chromatids, while homologues in bivalents were segregated as regular dyads. In diakinesis, bivalent chromosomes displayed strong H3 phosphorylation signals in proximal regions, spreading to the rest of the chromosome. In contrast, in univalents, the H3 phosphorylation signals were weaker, occurring mostly outside proximal regions largely overlapping with the H3K4me3 signals. Reduced phosphorylation was associated with relative under-condensation of the univalent chromosomes, particularly at early diakinesis. CONCLUSIONS: We hypothesize that the absence of pairing and/or recombination in univalent chromosomes negatively affects the histone H3 phosphorylation of their chromatin and perhaps the loading of meiotic-specific cohesins. This apparently destabilizes cohesion of sister chromatids, leading to their premature split in the first meiotic division.


Assuntos
Histonas , Meiose , Histonas/genética , Fosforilação , Hibridização in Situ Fluorescente , Cromossomos , Epigênese Genética
4.
Plant J ; 105(5): 1400-1412, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280202

RESUMO

Casein kinase I (CK1), a ubiquitous Ser/Thr protein kinase in eukaryotes, plays a critical role in higher plant flowering. Arabidopsis CK1 family member MUT9-LIKE KINASEs, such as MLK1 and MLK3, have been shown to phosphorylate histone H3 at threonine 3 (H3T3), an evolutionarily conserved residue, and the modification is associated with the transcriptional repression of euchromatic and heterochromatic loci. This study demonstrates that mlk4-3, a T-DNA insertion mutant of MLK4, flowered late, and that overexpression of MLK4 caused early flowering. The nuclear protein MLK4 phosphorylated histone H3T3 both in vitro and in vivo, and this catalytic activity required the conserved lysine residue K175. mutation of MLK4 at K175 failed to restore the level of phosphorylated H3T3 (H3T3ph) or to complement the phenotypic defects of mlk4-3. The FLC/MAF-clade genes, including FLC, MAF4 and MAF5, were significantly upregulated in mlk4-3. The double mutant mlk4-3 flc-3 flowered earlier than mlk4-3, suggesting that functional FLC is crucial for flowering repression in mlk4-3. Chromatin immunoprecipitation assays showed that MLK4 bound to FLC/MAF chromatin and that H3T3ph occupancy at the promoter of FLC/MAF was negatively associated with its transcriptional level. In accordance, H3T3ph accumulated at FLC/MAF in 35S::MLK4/mlk4-3 but diminished in 35S::MLK4(K175R)/mlk4-3 plants. Moreover, the amount of RNA Pol II deposited at FLC/MAF was clearly enriched in mlk4-3 relative to the wild type. Therefore, MLK4-dependent phosphorylation of H3T3 contributes to accelerating flowering by repressing the transcription of negative flowering regulator FLC/MAF. This study sheds light on the delicate control of flowering by the plant-specific CK1, MLK4, via post-translational modification of histone H3.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , DNA Bacteriano/genética , Fosforilação/genética , Fosforilação/fisiologia
5.
Cytometry A ; 97(6): 557-562, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511890

RESUMO

Briefly depicted are the publications in CYTOMETRY that received the highest frequency of citations. Among them are seminal papers describing application of metachromatic fluorochrome acridine orange to differentially stain DNA versus RNA or to analyze susceptibility of DNA in situ to denaturation; both features being markers of different sections of the cell cycle including identification of noncycling quiescent cells. The papers reviewing detection of cyclins D1, E, A or B1, each in relation to cell cycle phase, were also among the highly cited ones. The highest citation rates received publications describing development of the TUNEL methodology to detect apoptotic DNA fragmentation, and more recently expression of ϒH2AX to reveal DNA damage. © 2020 International Society for Advancement of Cytometry.


Assuntos
Laranja de Acridina , DNA , Ciclo Celular , Citometria de Fluxo , Corantes Fluorescentes
6.
J Cell Biochem ; 117(3): 741-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26335579

RESUMO

cAMP is a second messenger well documented to be involved in the phosphorylation of PKA, MAP kinase, and histone H3 (H3). Early, we reported that cAMP also induced H3 dephosphorylation in a variety of proliferating cell lines. Herein, it is shown that cAMP elicits a biphasic H3 dephosphorylation independent of PKA activation in cycling cells. H89, a potent inhibitor of PKA catalytic sub-unite, could not abolish this effect. Additionally, H89 induces a rapid and biphasic H3 serine 10 dephosphorylation, while a decline in the basal phosphorylation of CREB/ATF-1 is observed. Rp-cAMPS, an analog of cAMP and specific inhibitor of PKA, is unable to suppress cAMP-mediated H3 dephosphorylation, whereas Rp-cAMPS effectively blocks CREB/ATF-1 hyper-phosphorylation by cAMP and its inducers. Interestingly, cAMP exerts a rapid and profound H3 dephosphorylation at much lower concentration (50-fold lower, 0.125 mM) than the concentration required for maximal CREB/ATF-1 phosphorylation (5 mM). Much higher cAMP concentration is required to fully induce CREB/ATF-1 gain in phosphate (5 mM), which correlates with the inhibition of H3 dephosphorylation. Also, the dephosphorylation of H3 does not overlap at onset of MAP kinase phosphorylation pathways, p38 and ERK. Surprisingly, rapamycin (an mTOR inhibitor), cAMP, and its natural inducer isoproterenol, elicit identical dephosphorylation kinetics on both S6K1 ribosomal kinase (a downstream mTOR target) and H3. Finally, cAMP-induced H3 dephosphorylation is PP1/2-dependent. The results suggest that a pathway, requiring much lower cAMP concentration to that required for CREB/ATF-1 hyper-phosphorylation, is responsible for histone H3 dephosphorylation and may be linked to mTOR down regulation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Serina-Treonina Quinases TOR/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Isoquinolinas/farmacologia , Sistema de Sinalização das MAP Quinases , Ácido Okadáico/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Sulfonamidas/farmacologia
7.
J Pathol ; 235(4): 606-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421395

RESUMO

Heart failure is associated with the reactivation of a fetal cardiac gene programme that has become a hallmark of cardiac hypertrophy and maladaptive ventricular remodelling, yet the mechanisms that regulate this transcriptional reprogramming are not fully understood. Using mice with genetic ablation of calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ), which are resistant to pathological cardiac stress, we show that CaMKIIδ regulates the phosphorylation of histone H3 at serine-10 during pressure overload hypertrophy. H3 S10 phosphorylation is strongly increased in the adult mouse heart in the early phase of cardiac hypertrophy and remains detectable during cardiac decompensation. This response correlates with up-regulation of CaMKIIδ and increased expression of transcriptional drivers of pathological cardiac hypertrophy and of fetal cardiac genes. Similar changes are detected in patients with end-stage heart failure, where CaMKIIδ specifically interacts with phospho-H3. Robust H3 phosphorylation is detected in both adult ventricular myocytes and in non-cardiac cells in the stressed myocardium, and these signals are abolished in CaMKIIδ-deficient mice after pressure overload. Mechanistically, fetal cardiac genes are activated by increased recruitment of CaMKIIδ and enhanced H3 phosphorylation at hypertrophic promoter regions, both in mice and in human failing hearts, and this response is blunted in CaMKIIδ-deficient mice under stress. We also document that the chaperone protein 14-3-3 binds phosphorylated H3 in response to stress, allowing proper elongation of fetal cardiac genes by RNA polymerase II (RNAPII), as well as elongation of transcription factors regulating cardiac hypertrophy. These processes are impaired in CaMKIIδ-KO mice after pathological stress. The findings reveal a novel in vivo function of CaMKIIδ in regulating H3 phosphorylation and suggest a novel epigenetic mechanism by which CaMKIIδ controls cardiac hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Insuficiência Cardíaca/enzimologia , Hemodinâmica , Histonas/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Montagem e Desmontagem da Cromatina , Modelos Animais de Doenças , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos Knockout , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Polimerase II/metabolismo , Ratos , Transcrição Gênica , Transfecção
8.
J Cell Sci ; 126(Pt 14): 3214-22, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660000

RESUMO

In sciarid flies (Diptera, Sciaridae), one or two paternally derived X chromosomes are discarded from the soma at early cleavages to determine the sex of the embryo (XX, females; X0, males). X chromosome(s) elimination is achieved by an abnormal anaphase segregation so that X sister chromatids do not reach the poles and are not included in the daughter nuclei. A cis-acting locus (CE) within the heterochromatin proximal to the centromere is known to regulate X chromosome elimination. By immunofluorescence analysis in early embryos from Sciara ocellaris and Sciara coprophila, we investigated histone H3 phosphorylation at Ser10, Ser28 and Thr3 prior to, and during, the X elimination process. We found that the regular syncytial nuclear divisions are characterized by a gradual loss of H3S10 phosphorylation along the chromosome arms at anaphase. Importantly, the eliminating X chromosomes show a retardation in anaphase chromatid segregation and high levels of H3S10 phosphorylation in the chromosome arms. In the present study, we provide the first evidence linking the hyper-phosphorylated H3 status of the X chromosome with a delay in sister chromatid separation at anaphase. Our findings support the idea that the CE induces a deficiency in H3 dephosphorylation in the paternal X chromosomes to be eliminated.


Assuntos
Dípteros/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Cromossomo X/metabolismo , Anáfase/genética , Animais , Células Cultivadas , Dípteros/genética , Embrião não Mamífero , Feminino , Imunofluorescência , Masculino , Fosforilação , Processos de Determinação Sexual/genética
9.
Exp Cell Res ; 324(1): 75-83, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24704462

RESUMO

Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3ß at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3ß by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3ß silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3ß activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/fisiologia , Quinase 3 da Glicogênio Sintase/fisiologia , Hiperglicemia/metabolismo , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Glucose/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Histonas/genética , Histonas/metabolismo , Humanos , Hiperglicemia/genética , Protamina Quinase/metabolismo
10.
J Cell Biochem ; 115(6): 1048-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564320

RESUMO

The activity of S6 kinases (S6K) is highly induced in cancer cells highlighting an essential role in carcinogenesis. The S6K family has two members: S6K1 and S6K2 which bear common as well as distinct features. In an attempt to identify S6K2 unique sequence features compared to S6K1, we applied extensive bioinformatic analysis and motif search approaches. Interestingly, we identified 14 unique protein signatures which are present in proteins directly connected to chromatin and/or involved in transcription regulation. Using chromatin binding assay, we biochemically showed that S6K2 is bound to chromatin as well as nuclear matrix cellular fractions in HEK293 cells. The presence of S6K2 in chromatin fractions raised the possibility that it may be in close proximity to a number of chromatin substrates. For that, we then searched for S6K phosphorylation consensus sites RXRXXT/S in mammalian proteins using the SWISS-PROT database. Interestingly, we identified some potential phosphorylation sites in histone H3 (Thr45). Using in vitro kinase assays and siRNA-based knockdown strategy; we confirmed that S6K2 but not S6K1 or AKT is essential for histone H3-Thr45 phosphorylation in HEK293 cells. Furthermore, we show that the nuclear localisation sequence in the S6K2 C-terminus is essential for this modification. We have found that, H3-Thr45 phosphorylation correlates to S6K activation in response to mitogens and TPA-induced cell differentiation of leukaemic cell lines U937, HL60 and THP1. Overall, we demonstrate that S6K2 is a novel kinase that can phosphorylate histone H3 at position Thr45, which may play a role during cell proliferation and/or differentiation.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Matriz Nuclear/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Fracionamento Celular , Linhagem Celular Tumoral , Cromatina/genética , Células HEK293 , Células HL-60 , Humanos , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Acetato de Tetradecanoilforbol/farmacologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA