RESUMO
Histone H3.3 is frequently mutated in tumors, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the epigenetic landscape, its effects on gene expression dynamics remain unclear. Here, we use a synthetic reporter to measure the effects of H3.3K36M on silencing and epigenetic memory after recruitment of the ZNF10 Krüppel-associated box (KRAB) domain, part of the largest class of human repressors and associated with H3K9me3 deposition. We find that H3.3K36M, which decreases H3K36 methylation and increases histone acetylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a model for establishment and maintenance of epigenetic memory, where the H3K36 methylation pathway is necessary to maintain histone deacetylation and convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.
Assuntos
Metilação de DNA , Epigênese Genética , Histonas , Mutação , Histonas/metabolismo , Histonas/genética , Humanos , Acetilação , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Lisina/metabolismo , Memória EpigenéticaRESUMO
Activated macrophages adapt their metabolic pathways to drive the pro-inflammatory phenotype, but little is known about the biochemical underpinnings of this process. Here, we find that lipopolysaccharide (LPS) activates the pentose phosphate pathway, the serine synthesis pathway, and one-carbon metabolism, the synergism of which drives epigenetic reprogramming for interleukin-1ß (IL-1ß) expression. Glucose-derived ribose and one-carbon units fed by both glucose and serine metabolism are synergistically integrated into the methionine cycle through de novo ATP synthesis and fuel the generation of S-adenosylmethionine (SAM) during LPS-induced inflammation. Impairment of these metabolic pathways that feed SAM generation lead to anti-inflammatory outcomes, implicating SAM as an essential metabolite for inflammatory macrophages. Mechanistically, SAM generation maintains a relatively high SAM:S-adenosylhomocysteine ratio to support histone H3 lysine 36 trimethylation for IL-1ß production. We therefore identify a synergistic effect of glucose and amino acid metabolism on orchestrating SAM availability that is intimately linked to the chromatin state for inflammation.
Assuntos
Histonas/metabolismo , Macrófagos Peritoneais/metabolismo , S-Adenosilmetionina/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Masculino , Metilação/efeitos dos fármacos , CamundongosRESUMO
Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.
Assuntos
Proliferação de Células , Senescência Celular , Dano ao DNA , Replicação do DNA , DNA de Neoplasias/biossíntese , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/metabolismo , Animais , Montagem e Desmontagem da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias Uterinas/genéticaRESUMO
The programmed formation of hundreds of DNA double-strand breaks (DSBs) is essential for proper meiosis and fertility. In mice and humans, the location of these breaks is determined by the meiosis-specific protein PRDM9, through the DNA-binding specificity of its zinc-finger domain. PRDM9 also has methyltransferase activity. Here, we show that this activity is required for H3K4me3 and H3K36me3 deposition and for DSB formation at PRDM9-binding sites. By analyzing mice that express two PRDM9 variants with distinct DNA-binding specificities, we show that each variant generates its own set of H3K4me3 marks independently from the other variant. Altogether, we reveal several basic principles of PRDM9-dependent DSB site determination, in which an excess of sites are designated through PRDM9 binding and subsequent histone methylation, from which a subset is selected for DSB formation.
Assuntos
Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Meiose/fisiologia , Animais , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Metilação , Camundongos , Camundongos Transgênicos , Domínios ProteicosRESUMO
Faithful propagation of functionally distinct chromatin states is crucial for maintaining cellular identity, and its breakdown can lead to diseases such as cancer. Whereas mechanisms that sustain repressed states have been intensely studied, regulatory circuits that protect active chromatin from inactivating signals are not well understood. Here we report a positive feedback loop that preserves the transcription-competent state of RNA polymerase II-transcribed genes. We found that Pdp3 recruits the histone acetyltransferase Mst2 to H3K36me3-marked chromatin. Thereby, Mst2 binds to all transcriptionally active regions genome-wide. Besides acetylating histone H3K14, Mst2 also acetylates Brl1, a component of the histone H2B ubiquitin ligase complex. Brl1 acetylation increases histone H2B ubiquitination, which positively feeds back on transcription and prevents ectopic heterochromatin assembly. Our work uncovers a molecular pathway that secures epigenome integrity and highlights the importance of opposing feedback loops for the partitioning of chromatin into transcriptionally active and inactive states.
Assuntos
Montagem e Desmontagem da Cromatina , Eucromatina/enzimologia , Inativação Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Acetilação , Eucromatina/genética , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Heterocromatina/enzimologia , Heterocromatina/genética , Histona Acetiltransferases/genética , Proteínas de Membrana/genética , Mutação , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica , Ativação Transcricional , UbiquitinaçãoRESUMO
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q, and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as a tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to three methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In Molecular Dynamics simulations, we determined key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Lisina , Metilação , Neoplasias , Humanos , Histonas/química , Histonas/metabolismo , Lisina/química , Lisina/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , MutaçãoRESUMO
Despite recent advances have been made in clinical treatments of breast cancer, the general prognosis of patients remains poor. Therefore, it is imperative to develop a more effective therapeutic strategy. Lysine demethylase 4B (KDM4B) has been reported to participate in breast cancer development recently, but its exact biological role in breast cancer remains unclear. Here, we observed that KDM4B was down-regulated in human primary BRCA tissues and the low levels of KDM4B expression were correlated with poor survival. Gain- and loss-of-function experiments showed that KDM4B inhibited the proliferation and metastasis of breast cancer cells. Besides, knockdown of KDM4B promoted the epithelial-mesenchymal transition (EMT) and cell stemness in breast cancer cells. Mechanistically, KDM4B down-regulates PHGDH by decreasing the enrichment of H3K36me3 on the promoter region of PHGDH. Knockdown of PHGDH could significantly reversed proliferation, migration, EMT, and cell stemness induced by KDM4B silencing in breast cancer cells. Collectively, we propose a model for a KDM4B/PHGDH axis that provides novel insight into breast cancer development, which may serve as a potential factor for predicting prognosis and a therapeutic target for breast cancer.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Regulação para Cima , Regulação para Baixo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismoRESUMO
The global transition towards diets high in calories has contributed to 2.1 billion people becoming overweight, or obese, which damages male reproduction and harms offspring. Recently, more and more studies have shown that paternal exposure to stress closely affects the health of offspring in an intergenerational and transgenerational way. SET Domain Containing 2 (SETD2), a key epigenetic gene, is highly conserved among species, is a crucial methyltransferase for converting histone 3 lysine 36 dimethylation (H3K36me2) into histone 3 lysine 36 trimethylation (H3K36me3), and plays an important regulator in the response to stress. In this study, we compared patterns of SETD2 expression and the H3K36me3 pattern in pre-implantation embryos derived from normal or obese mice induced by high diet. The results showed that SETD2 mRNA was significantly higher in the high-fat diet (HFD) group than the control diet (CD) group at the 2-cell, 4-cell, 8-cell, and 16-cell stages, and at the morula and blastocyst stages. The relative levels of H3K36me3 in the HFD group at the 2-cell, 4-cell, 8-cell, 16-cell, morula stage, and blastocyst stage were significantly higher than in the CD group. These results indicated that dietary changes in parental generation (F0) male mice fed a HFD were traceable in SETD2/H3K36me3 in embryos, and that a paternal high-fat diet brings about adverse effects for offspring that might be related to SETD2/H3K36me3, which throws new light on the effect of paternal obesity on offspring from an epigenetic perspective.
Assuntos
Dieta Hiperlipídica , Histonas , Humanos , Masculino , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisina/metabolismo , Obesidade/genética , Desenvolvimento EmbrionárioRESUMO
N6-Methyladenosine (m6A) is the most prevalent internal RNA modification in mRNA, and has been found to be highly conserved and hard-coded in mammals and other eukaryotic species. The importance of m6A for gene expression regulation and cell fate decisions has been well acknowledged in the past few years. However, it was only until recently that the mechanisms underlying the biogenesis and specificity of m6A modification in cells were uncovered. We review up-to-date knowledge on the biogenesis of the RNA m6A modification, including the cis-regulatory elements and trans-acting factors that determine general de novo m6A deposition and modulate cell type-specific m6A patterns, and we discuss the biological significance of such regulation.
Assuntos
Adenosina/análogos & derivados , Adenosina/genética , Metilação , RNA/genética , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Células Eucarióticas , Regulação da Expressão Gênica/genética , Humanos , Processamento de Proteína Pós-Traducional/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Round spermatid injection (ROSI) is the last resort and recourse for men with nonobstructive azoospermia to become biological fathers of their children. However, the ROSI-derived offspring rate is lower than intracytoplasmic sperm injection (ICSI) in mice (20% vs. 60%). This low success rate has hindered the spread of ROSI in ART (Assisted Reproductive Technology). However, the cause of the ROSI-zygote-derived low offspring rate is currently unknown. In the previous studies, we reported that H3K9me3 and H3K27me3 exhibited ectopic localizations in male pronuclei (mPN) of ROSI-zygotes, suggesting that the carried over histone to zygotes conveys epigenetic information. In this study, we analyzed other histone modifications to explore unknown abnormalities. H3K36me3 showed an increased methylation state compared to ICSI-derived embryos but not for H3K4me3. Abnormal H3K36me3 was corrected until 2-cell stage embryos, suggesting a long window of reprogramming ability in ROSI-embryos. Treatment with TSA of ROSI-zygotes, which was reported to be capable of correcting ectopic DNA methylation in ROSI-zygotes, caused abnormalities of H3K36me3 in male and female PN (fPN) of the zygotes. In contrast, round spermatid TSA treatment before ROSI, which was reported to improve the preimplantation development of ROSI-zygotes, showed beneficial effects without toxicity in fPN. Therefore, the results suggest that TSA has some negative effects, but overall, it is effective in the correction of epigenetic abnormalities in ROSI-zygotes. When attempting to correct epigenetic abnormalities, attention should be paid to epigenomes not only in male but also in female pronuclei.
Assuntos
Histonas , Espermátides , Humanos , Criança , Masculino , Feminino , Camundongos , Animais , Espermátides/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Sêmen/metabolismo , Blastocisto/metabolismo , Metilação de DNARESUMO
HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.
Assuntos
Cromossomos Humanos , HIV-1 , Código das Histonas , Histonas , Nucleossomos , Integração Viral , Cromatina/metabolismo , Cromossomos Humanos/virologia , DNA Viral/genética , DNA Viral/metabolismo , Infecções por HIV/virologia , Integrase de HIV/genética , Integrase de HIV/metabolismo , HIV-1/genética , Histonas/química , Histonas/metabolismo , Humanos , Lisina/genética , Metilação , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/virologia , Integração Viral/genéticaRESUMO
SETD2-dependent H3 Lysine-36 trimethylation (H3K36me3) has been recently linked to the deposition of de-novo DNA methylation. SETD2 is frequently mutated in cancer, however, the functional impact of SETD2 loss and depletion on DNA methylation across cancer types and tumorigenesis is currently unknown. Here, we perform a pan-cancer analysis and show that both SETD2 mutation and reduced expression are associated with DNA methylation dysregulation across 21 out of the 24 cancer types tested. In renal cancer, these DNA methylation changes are associated with altered gene expression of oncogenes, tumour suppressors, and genes involved in neoplasm invasiveness, including TP53, FOXO1, and CDK4. This suggests a new role for SETD2 loss in tumorigenesis and cancer aggressiveness through DNA methylation dysregulation. Moreover, using a robust machine learning methodology, we develop and validate a 3-CpG methylation signature which is sufficient to predict SETD2 mutation status with high accuracy and correlates with patient prognosis.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Metilação de DNA , Histonas/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genéticaRESUMO
Sepsis is a severe syndrome caused by the imbalance of the host response to infection, accompanied by multiple organ damage, especially acute lung injury. SET Domain-Containing 2 (SETD2) is a methyltransferase catalyzing H3 lysine 36 trimethylation (H3K36me3) that regulates multiple biological processes. This study focused on explicating the action of SETD2 on macrophage function in sepsis and the precise mechanism involved. Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blotting were used to determine expression. Luciferase reporter assay and chromatin immunoprecipitation assay were conducted to detect the binding of SETD2 or H3K36me3 with the hypoxia-inducible factor 1, alpha subunit (Hif1a) gene. A sepsis-induced acute lung injury model was constructed via cecal ligation and puncture (CLP). SETD2 was decreased in RAW 264.7 cells stimulated by lipopolysaccharide (LPS). Besides, SETD2 suppressed M1 macrophage polarization and glycolysis caused by LPS. HIF-1α was enhanced in RAW 264.7 cells stimulated by LPS and inversely related to SETD2 expression. In addition, SETD2-catalyzed H3K36me3 bound to the Hif1a gene to modulate HIF-1α expression. Furthermore, Hif1a silencing suppressed Setd2 silencing-induced M1 macrophage polarization and glycolysis in RAW 264.7 cells. Moreover, overexpression of Setd2 inhibited CLP-induced lung injury and M1 macrophage polarization in mice. SETD2 suppressed M1 macrophage polarization and glycolysis via regulating HIF-1α through catalyzing H3K36me3 in sepsis.
Assuntos
Lesão Pulmonar Aguda , Sepse , Animais , Camundongos , Histona Metiltransferases , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos , Macrófagos , Lesão Pulmonar Aguda/etiologia , Glicólise , Sepse/complicações , Histona-Lisina N-MetiltransferaseRESUMO
Functional data indicate that specific histone modification enzymes can be key to longevity in Caenorhabditis elegans, but the molecular basis of how chromatin structure modulates longevity is not well understood. In this study, we profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old Caenorhabditis elegans. We revealed a new role of H3K36me3 in maintaining gene expression stability through aging with important consequences on longevity. We found that genes with dramatic expression change during aging are marked with low or even undetectable levels of H3K36me3 in their gene bodies irrespective of their corresponding mRNA abundance. Interestingly, 3' untranslated region (UTR) length strongly correlates with H3K36me3 levels and age-dependent mRNA expression stability. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging was also observed in Drosophila melanogaster, suggesting a conserved mechanism for H3K36me3 in suppressing age-dependent mRNA expression change. Importantly, inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span, suggesting a causative role of the H3K36me3 marking in modulating age-dependent gene expression stability and longevity.
Assuntos
Envelhecimento/genética , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Longevidade/genética , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Histonas/genética , Lisina/genética , Lisina/metabolismo , MetilaçãoRESUMO
Epigenetic mechanisms play a primary role in the cellular damage associated with brain aging. Histone posttranslational modifications represent intrinsic molecular alterations essential for proper physiological functioning, while divergent expression and activity have been detected in several aspects of brain aging. Aberrant histone methylation has been involved in neural stem cell (NSC) quiescence, microglial deficits, inflammatory processes, memory impairment, cognitive decline, neurodegenerative diseases, and schizophrenia. Herein, we provide an overview of recent studies on epigenetic regulation of brain tissue aging, mainly focusing on the role of histone methylation in different cellular and functional aspects of the aging process. Emerging targeting strategies of histone methylation are further explored, including neuroprotective drugs, natural compounds, and lifestyle modifications with therapeutic potential towards the aging process of the brain.
Assuntos
Epigênese Genética , Histonas , Histonas/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Encéfalo/metabolismo , Metilação de DNARESUMO
Both SETD2-mediated H3K36me3 and miRNAs play critical epigenetic roles in inflammatory bowel disease (IBD) and involve in the dysfunctional intestinal barrier. However, little is known about cross-talk between these two types of regulators in IBD progression. We performed small RNA sequencing of Setd2 epithelium-specific knockout mice (Setd2Vil-KO) and wild-type controls, both with DSS-induced colitis, and designed a framework for integrative analysis. Firstly, we integrated the downloaded ChIP-seq data with miRNA expression profiles and identified a significant intersection of pre-miRNA expression and H3K36me3 modification. A significant inverse correlation was detected between changes of H3K36me3 modification and expression of the 171 peak-covered miRNAs. We further integrated RNA-seq data with predicted miRNA targets to screen negatively regulated miRNA-mRNA pairs and found the H3K36me3-associated differentially expressed microRNAs significantly enriched in cell-cell junction and signaling pathways. Using network analysis, we identified ten hub miRNAs, among which six are H3K36me3-associated, suggesting therapeutic targets for IBD patients with SETD2-deficiency.
Assuntos
Colite , Doenças Inflamatórias Intestinais , MicroRNAs , Animais , Colite/induzido quimicamente , Colite/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , RNA Mensageiro/genéticaRESUMO
BACKGROUND: Regulation of chromatin accessibility and transcription are tightly coordinated processes. Studies in yeast and higher eukaryotes have described accessible chromatin regions, but little work has been done in filamentous fungi. RESULTS: Here we present a genome-scale characterization of accessible chromatin regions in Neurospora crassa, which revealed characteristic molecular features of accessible and inaccessible chromatin. We present experimental evidence of inaccessibility within heterochromatin regions in Neurospora, and we examine features of both accessible and inaccessible chromatin, including the presence of histone modifications, types of transcription, transcription factor binding, and relative nucleosome turnover rates. Chromatin accessibility is not strictly correlated with expression level. Accessible chromatin regions in the model filamentous fungus Neurospora are characterized the presence of H3K27 acetylation and commonly associated with pervasive non-coding transcription. Conversely, methylation of H3 lysine-36 catalyzed by ASH1 is correlated with inaccessible chromatin within promoter regions. CONCLUSIONS: In N. crassa, H3K27 acetylation is the most predictive histone modification for open chromatin. Conversely, our data show that H3K36 methylation is a key marker of inaccessible chromatin in gene-rich regions of the genome. Our data are consistent with an expanded role for H3K36 methylation in intergenic regions of filamentous fungi compared to the model yeasts, S. cerevisiae and S. pombe, which lack homologs of the ASH1 methyltransferase.
Assuntos
Neurospora crassa , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , Histonas/genética , Neurospora crassa/genética , Nucleossomos/genética , Proteínas Repressoras , Saccharomyces cerevisiaeRESUMO
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.
Assuntos
Antifúngicos , Azóis , Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes MDR , Humanos , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/farmacologiaRESUMO
SET domain-containing 2 (SETD2), the primary methyltransferase for histone 3 lysine-36 trimethylation (H3K36me3) in mammals, is associated with many hematopoietic diseases when mutated. Previous works have emphasized its role in maintaining adult hematopoietic stem cells or tumorigenesis, however, whether and how SETD2 regulates erythropoiesis during embryonic development is relatively unexplored. In this study, using a conditional SETD2 knockout (KO) mouse model, we reveal that SETD2 plays an essential role in fetal erythropoiesis. Loss of Setd2 in hematopoietic cells ablates H3K36me3, and leads to anemia with a significant decrease in erythroid cells in the peripheral blood at E18.5. This is due to impaired erythroblast differentiation in both spleen and liver. We also find increased proportions of nucleated erythrocytes in the blood of Setd2 KO embryos. Lastly, we ascribe embryonic erythropoiesis-related genes Vegfc, Vegfr3, and Prox1, as likely downstream targets of SETD2 regulation. Our study reveals a critical role of SETD2 in fetal erythropoiesis that precedes adult hematopoiesis, and provide unique insights into the defects in erythroid lineages, such as anemia.
Assuntos
Diferenciação Celular/genética , Eritroblastos/metabolismo , Eritropoese/genética , Feto/metabolismo , Histona-Lisina N-Metiltransferase/genética , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Eritroblastos/citologia , Eritrócitos/citologia , Eritrócitos/metabolismo , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
PURPOSE: SETD2 is one of the key epigenetic regulatory genes involved in histone modifications. Its alterations were potentially oncogenic and commonly found in cancers. Interestingly, SETD2 is one of the most frequent mutated genes found exclusively in phyllodes tumor of the breast (PT). However, little has been done to further characterize SETD2 alterations in PT. METHODS: In this study, we examined the alterations of SETD2 gene and protein expression in a large cohort of PTs. Their correlations with SETD2 downstream target, H3K36me3 expression, and clinicopathologic features in PT were also assessed. RESULTS: SETD2 mutation was found in 15.9% of our cases and was mostly predicted to be damaging mutations. Interestingly, SETD2 mutations were associated with lower H3K36me3 expression, particularly those with damaging mutations (p = .041). Neither SETD2 mutations nor H3K36me3 expression was associated with PT grading and other clinicopathological features. By contrast, the SETD2 protein expression cannot reflect its mutation status and showed a different trend of clinicopathological correlations from H3K36me3. CONCLUSIONS: Our findings may suggest a potential involvement of epigenetic regulation via SETD2 alterations and downstream H3K36me3 on PT development. SETD2 mutations may occur early in the pathogenic process of PTs and its loss per se may not be sufficient for progression to malignancy. Exclusive alterations of SETD2 in PT can be used as markers for the diagnosis of fibroepithelial lesions. The association of H3K36me3 with SETD2 mutations may also indicate the value of evaluation of H3K36me3 expression in the diagnosis of fibroepithelial lesions.