Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 229(1): 414-428, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32746499

RESUMO

Inflorescence architecture critically influences plant reproductive success and crop yield, and it reflects the activity of the inflorescence meristem and pedicel length. In Arabidopsis thaliana, the ERECTA (ER) signaling pathway and the SWR1 chromatin remodeling complex jointly regulate inflorescence architecture by promoting the expression of the PACLOBUTRAZOL RESISTANCE (PRE) gene family. However, how PREs regulate inflorescence architecture remains unclear. RNA-sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1) and the SWR1-ER-MPK6 pathway in the control of inflorescence architecture were further studied. The present findings support that HBI1 functions downstream of PREs in the SWR1 and ER pathways to regulate inflorescence architecture by promoting pedicel elongation. Specifically, it binds to the promoters of the brassinosteroid (BR) biosynthesis gene CYP85A2 and a series of auxin-related genes, including auxin response factor ARF3, and promotes their expression. In turn, ARF3 can also bind to auxin signaling genes as well as CYP85A2 to activate their expression and promote pedicel elongation. Our study provides evidence that inflorescence architecture regulation by SWR1 and ER involves the HBI1 regulatory hub and its activation of both the BR and auxin hormone pathways.


Assuntos
Proteínas de Arabidopsis , Brassinosteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Inflorescência/genética , Inflorescência/metabolismo , Transdução de Sinais
2.
J Exp Bot ; 72(13): 4708-4720, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33963401

RESUMO

Seed germination is regulated by multiple phytohormones, including gibberellins (GAs) and brassinosteroids (BRs); however, the molecular mechanism underlying GA and BR co-induced seed germination is not well elucidated. We demonstrated that BRs induce seed germination through promoting testa and endosperm rupture in Arabidopsis. BRs promote cell elongation, rather than cell division, at the hypocotyl-radicle transition region of the embryonic axis during endosperm rupture. Two key basic helix-loop-helix transcription factors in the BR signaling pathway, HBI1 and BEE2, are involved in the regulation of endosperm rupture. Expression of HBI1 and BEE2 was induced in response to BR and GA treatment. In addition, HBI1- or BEE2-overexpressing Arabidopsis plants are less sensitive to the BR biosynthesis inhibitor, brassinazole, and the GA biosynthesis inhibitor, paclobutrazol. HBI1 and BEE2 promote endosperm rupture and seed germination by directly regulating the GA-Stimulated Arabidopsis 6 (GASA6) gene. Expression of GASA6 was altered in Arabidopsis overexpressing HBI1, BEE2, or SRDX-repressor forms of the two transcription factors. In addition, HBI1 interacts with BEE2 to synergistically activate GASA6 expression. Our findings define a new role for GASA6 in GA and BR signaling and reveal a regulatory module that controls GA and BR co-induced seed germination in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas , Sementes/genética , Sementes/metabolismo
3.
J Integr Plant Biol ; 63(5): 902-912, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33210841

RESUMO

Nitrate is the main source of nitrogen for plants but often distributed heterogeneously in soil. Plants have evolved sophisticated strategies to achieve adequate nitrate by modulating the root system architecture. The nitrate acquisition system is triggered by the short mobile peptides C-TERMINALLY ENCODED PEPTIDES (CEPs) that are synthesized on the nitrate-starved roots, but induce the expression of nitrate transporters on the other nitrate-rich roots through an unclear signal transduction pathway. Here, we demonstrate that the transcription factors HBI1 and TCP20 play important roles in plant growth and development in response to fluctuating nitrate supply. HBI1 physically interacts with TCP20, and this interaction was enhanced by the nitrate starvation. HBI1 and TCP20 directly bind to the promoters of CEPs and cooperatively induce their expression. Mutation in HBIs and/or TCP20 resulted in impaired systemic nitrate acquisition response. Our solid genetic and molecular evidence strongly indicate that the HBI1-TCP20 module positively regulates the CEPs-mediated systemic nitrate acquisition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
4.
Cell Rep ; 28(7): 1670-1678.e3, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412238

RESUMO

Plants continuously need to adapt to their environment and prioritize either growth or defense responses to secure survival and reproduction. Trade-offs between growth and defense are often attributed to the allocation of energy for growth to adaptation responses. Still, the exact mechanisms underlying growth and defense trade-offs are poorly understood. Here, we demonstrate that the growth-related transcription factor HOMOLOG OF BEE2 INTERACTING WITH IBH 1 (HBI1) regulates apoplastic reactive oxygen species (ROS) homeostasis by differentially controlling the expression of NADPH oxidases (NOXs) and peroxidases (POXs). The HBI1 target genes RESPIRATORY BURST OXIDASE HOMOLOG A (RbohA) and RbohC have contrasting effects on the regulation of cell size. In addition, the HBI1-controlled NOXs and POXs oppositely regulate susceptibility toward Pseudomonas syringae. Our findings reveal that the incompatibility between growth and defense programs can be attributed to the way apoplastic ROS homeostasis is modulated during both processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças das Plantas/imunologia , Pseudomonas syringae/imunologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Pseudomonas syringae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA