Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242155

RESUMO

Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear. Here, we identify a novel Arabidopsis gene, BRZ INSENSITIVE LONG HYPOCOTYL 9 (BIL9), which promotes plant growth via BR signaling. Overexpression of BIL9 enhances drought and mannitol stress resistance and increases the expression of drought-responsive genes. BIL9 protein is induced by dehydration and interacts with the HD-Zip IV transcription factor HOMEODOMAIN GLABROUS 11 (HDG11), which is known to promote plant resistance to drought stress, in vitro and in vivo. BIL9 enhanced the transcriptional activity of HDG11 for drought-stress-resistant genes. BIL9 is a novel BR signaling factor that enhances both plant growth and plant drought resistance.

2.
New Phytol ; 223(3): 1478-1488, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31004497

RESUMO

Improvement of crop drought resistance and water-use efficiency (WUE) has been a major endeavor in agriculture. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor we previously identified from the enhanced drought tolerance1 mutant (edt1), has been demonstrated to improve drought tolerance and WUE significantly in multiple plant species when constitutively overexpressed. Here, we report the genetic evidence suggesting a genetic pathway, which consists of EDT1/HDG11, ERECTA, and E2Fa loci, and regulates WUE by modulating stomatal density. AtEDT1/HDG11 transcriptionally activates ERECTA by binding to homeodomain-binding (HD) cis-elements in the ERECTA promoter. ERECTA, in turn, depends on E2Fa to modulate the expression of cell cycle-related genes. This modulation affects the transition from mitosis to endocycle, leading to increased ploidy levels in leaf cells, and therefore increased cell size and decreased stomatal density. Our results suggest a possible EDT1/HDG11-ERECTA-E2Fa genetic pathway that reduces stomatal density by increasing cell size and provide a new avenue to improve WUE of crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição E2F/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Água , Arabidopsis/genética , Tamanho Celular , Regulação da Expressão Gênica de Plantas , Mutação/genética , Poliploidia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Regulação para Cima
3.
J Integr Plant Biol ; 57(12): 1017-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25752924

RESUMO

Root architecture is crucial for plants to absorb water and nutrients. We previously reported edt1 (edt1D) mutant with altered root architecture that contributes significantly to drought resistance. However, the underlying molecular mechanisms are not well understood. Here we report one of the mechanisms underlying EDT1/HDG11-conferred altered root architecture. Root transcriptome comparison between the wild type and edt1D revealed that the upregulated genes involved in jasmonate biosynthesis and signaling pathway were enriched in edt1D root, which were confirmed by quantitative RT-PCR. Further analysis showed that EDT1/HDG11, as a transcription factor, bound directly to the HD binding sites in the promoters of AOS, AOC3, OPR3, and OPCL1, which encode four key enzymes in JA biosynthesis. We found that the jasmonic acid level was significantly elevated in edt1D root compared with that in the wild type subsequently. In addition, more auxin accumulation was observed in the lateral root primordium of edt1D compared with that of wild type. Genetic analysis of edt1D opcl1 double mutant also showed that HDG11 was partially dependent on JA in regulating LR formation. Taken together, overexpression of EDT1/HDG11 increases JA level in the root of edt1D by directly upregulating the expressions of several genes encoding JA biosynthesis enzymes to activate auxin signaling and promote lateral root formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Mutação/genética , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fatores de Transcrição/genética , Regulação para Cima/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma/genética
4.
J Exp Bot ; 65(15): 4285-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24821957

RESUMO

The gain-of-function mutant edt1 shows significantly enhanced drought tolerance and a well-developed root system including deeper primary roots and more lateral roots. To explore the molecular mechanisms underlying the improved root system of edt1, we performed transcriptome comparison between the wild-type and edt1 roots. One of the interesting findings from the analysis was that several gene families of cell-wall-loosening proteins were upregulated in the mutant roots, including expansins, extensins, xyloglucan endotransglucosylase/hydrolases (XTHs), pectin-related enzymes, and cellulases. Most of these genes contain HD-binding cis-elements in their promoters predominantly with the TTTAATTT sequence, which can be bound by HDG11 in vitro and in vivo. The coordinated expression of these gene families overlaps fast root elongation. Furthermore, overexpression of AtEXPA5, which was dramatically upregulated in edt1, resulted in longer primary roots because cells were more extended longitudinally. When combined by crossing the AtEXPA5-overexpression lines with one pectin methylesterase inhibitor family protein (PMEI) gene (At5g62360)- or one cellulase (CEL) gene (At2g32990)-overexpression lines, the primary roots of the progeny even exceeded both parents in length. Our results demonstrate that HDG11 directly upregulates cell-wall-loosening protein genes, which is correlated with altered root system architecture, and confirm that cell-wall-loosening proteins play important roles in coordinating cell-wall extensibility with root development. The results of transgene experiments showed that expansin works together with PMEI and CEL to generate synergistic effects on primary root elongation, suggesting that different cell-wall-loosening protein families may function in combination to generate optimal effects on root extensibility.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/metabolismo , Crescimento Celular , Celulase/metabolismo , Proteínas de Plantas/fisiologia , Regulação para Cima
5.
Front Plant Sci ; 7: 1285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625663

RESUMO

Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA