Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Immunity ; 47(4): 789-802.e9, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045907

RESUMO

Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors.


Assuntos
Imunoterapia/métodos , Neoplasias Experimentais/terapia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-met/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
Mol Syst Biol ; 20(3): 187-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216754

RESUMO

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfatidilinositol 3-Quinases/metabolismo , Hepatócitos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fígado Gorduroso/metabolismo , Neoplasias Hepáticas/patologia
3.
Cell Mol Life Sci ; 81(1): 28, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212428

RESUMO

Although amplifications and mutations in receptor tyrosine kinases (RTKs) act as bona fide oncogenes, in most cancers, RTKs maintain moderate expression and remain wild-type. Consequently, cognate ligands control many facets of tumorigenesis, including resistance to anti-RTK therapies. Herein, we show that the ligands for the RTKs MET and RON, HGF and HGFL, respectively, are synthesized as inactive precursors that are activated by cellular proteases. Our newly generated HGF/HGFL protease inhibitors could overcome both de novo and acquired cetuximab resistance in colorectal cancer (CRC). Conversely, HGF overexpression was necessary and sufficient to induce cetuximab resistance and loss of polarity. Moreover, HGF-induced cetuximab resistance could be overcome by the downstream MET inhibitor, crizotinib, and upstream protease inhibitors. Additionally, HAI-1, an endogenous inhibitor of HGF proteases, (i) was downregulated in CRC, (ii) exhibited increased genomic methylation that correlated with poor prognosis, (iii) HAI-1 expression correlated with cetuximab response in a panel of cancer cell lines, and (iv) exogenous addition of recombinant HAI-1 overcame cetuximab resistance in CC-HGF cells. Thus, we describe a targetable, autocrine HAI-1/Protease/HGF/MET axis in cetuximab resistance in CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Cetuximab/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inibidores de Proteases/farmacologia , Peptídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia
4.
Cancer Sci ; 115(2): 369-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050654

RESUMO

In gastric cancer (GC), the liver is a common organ for distant metastasis, and patients with gastric cancer with liver metastasis (GCLM) generally have poor prognosis. The mechanism of GCLM is unclear. Invadopodia are special membrane protrusions formed by tumor cells that can degrade the basement membrane and ECM. Herein, we investigated the role of invadopodia in GCLM. We found that the levels of invadopodia-associated proteins were significantly higher in liver metastasis than in the primary tumors of patients with GCLM. Furthermore, GC cells could activate hepatic stellate cells (HSCs) within the tumor microenvironment of liver metastases through the secretion of platelet-derived growth factor subunit B (PDGFB). Activated HSCs secreted hepatocyte growth factor (HGF), which activated the MET proto-oncogene, MET receptor of GC cells, thereby promoting invadopodia formation through the PI3K/AKT pathway and subsequently enhancing the invasion and metastasis of GC cells. Therefore, cross-talk between GC cells and HSCs by PDGFB/platelet derived growth factor receptor beta (PDGFRß) and the HGF/MET axis might represent potential therapeutic targets to treat GCLM.


Assuntos
Neoplasias Hepáticas , Podossomos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Células Estreladas do Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Microambiente Tumoral
5.
Biochem Biophys Res Commun ; 692: 149321, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056156

RESUMO

Spinal cord injury (SCI) can cause severe and permanent neurological damage, and neuronal apoptosis could inhibit functional recovery of damaged spinal cord greatly. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential to repair SCI because of a series of advantages, including inhibition of neuronal apoptosis and multiple differentiation. The former may play an important role. However, the detailed regulatory mechanism associated with the inhibition of neuronal apoptosis after hUC-MSCs administration has not been elucidated. In this study, proteomics analysis of precious human cerebrospinal fluid (CSF) samples collected from SCI subjects receiving hUC-MSCs delivery indicated that hepatocyte growth factor (HGF) is largely involved in SCI repair. Furthermore, overexpression of HGF derived from hUC-MSCs could decrease reactive oxygen species to prevent neuron apoptosis to the maximum, and thus lead to significant recovery of spinal cord dysfunction. Moreover, HGF could promote phosphorylation of Akt/FoxO3a pathway to decrease reactive oxygen species to reduce neuron apoptosis. For the first time, our research revealed that HGF secreted by hUC-MSCs inhibits neuron apoptosis by phosphorylation of Akt/FoxO3a to repair SCI. This study provides important clues associated with drug selection for the effective treatment of SCI in humans.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Cordão Umbilical , Apoptose , Traumatismos da Medula Espinal/metabolismo
6.
Cytokine ; 177: 156542, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38364458

RESUMO

The COVID-19 patients showed hyperinflammatory response depending on the severity of the disease but little have been reported about this response in oncologic patients that also were infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sixty-five circulating cytokines/chemokines were quantified in 15 oncologic patients, just after SARS-CoV-2 infection and fourteen days later, and their levels were compared in patients who required hospitalisation by COVID-19 versus non-hospitalised patients. A higher median age of 72 years (range 61-83) in oncologic patients after SARS-CoV-2 infection was associated with hospitalisation requirement by COVID-19 versus a median age of 49 years (20-75) observed in the non-hospitalised oncologic patients (p = 0.008). Moreover, oncologic patients at metastatic stage or with lung cancer were significantly associated with hospitalisation by COVID-19 (p = 0.044). None of these hospitalised patients required ICU treatment. Higher basal levels of tumour necrosis factor receptor II (TNF-RII), interferon-γ (IFNγ)-induced protein 10 (IP-10) and hepatocyte growth factor (HGF) in plasma were significantly observed in oncologic patients who required hospitalisation by COVID-19. Higher TNF-RII, IP-10 and HGF levels after the SARS-CoV-2 infection in oncologic patients could be used as biomarkers of COVID-19 severity associated with hospitalisation requirements.


Assuntos
COVID-19 , Neoplasias , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Quimiocina CXCL10/sangue , Quimiocina CXCL10/química , COVID-19/diagnóstico , COVID-19/metabolismo , Fator de Crescimento de Hepatócito/sangue , Fator de Crescimento de Hepatócito/química , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/química , SARS-CoV-2 , Neoplasias/metabolismo
7.
J Pathol ; 259(2): 180-193, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373877

RESUMO

Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Quimiocina CXCL16 , Enterite , Lesões por Radiação , Animais , Camundongos , Quimiocina CXCL16/metabolismo , Enterite/etiologia , Enterite/metabolismo , Fibrose , Lesões por Radiação/genética , Receptores CXCR6 , Regeneração
8.
J Periodontal Res ; 59(3): 565-575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240289

RESUMO

BACKGROUND AND OBJECTIVE: Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS: We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS: We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION: HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.


Assuntos
Perda do Osso Alveolar , Fator de Crescimento de Hepatócito , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Periodontite , Microtomografia por Raio-X , Animais , Fator de Crescimento de Hepatócito/metabolismo , Periodontite/metabolismo , Periodontite/patologia , Camundongos , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Modelos Animais de Doenças , Progressão da Doença , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Masculino , Ensaio de Imunoadsorção Enzimática
9.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791500

RESUMO

Lymphedema is a disorder that leads to excessive swelling due to lymphatic insufficiency, resulting in the accumulation of protein-rich interstitial fluid. Primary lymphedema predominantly impacts the lower extremities and is frequently linked to hereditary factors. This condition is known to be associated with variants in several genes, such as FOXC2, FLT4, and SOX18. However, many cases remain unexplained, suggesting undiscovered gene associations. This study describes a novel mutation in the hepatocyte growth factor (HGF) gene, a previously hypothesized candidate for lymphedema pathogenesis. This mutation was identified in affected members of a multigenerational family presenting with primary leg lymphedema, consistent with an autosomal dominant inheritance pattern.


Assuntos
Fator de Crescimento de Hepatócito , Linfedema , Mutação , Linhagem , Humanos , Linfedema/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto
10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000441

RESUMO

Although inhibitors targeting the PD1/PD-L1 immune checkpoint are showing comparably good outcomes, a significant percentage of head and neck squamous cell carcinoma (HNSCC) patients do not respond to treatment. Apart from using different treatment strategies, another possibility would be to target other immune checkpoints operating in these non-responding tumors. To obtain an overview of which checkpoint ligands are expressed on HNSCC tumor cells and if these ligands are affected by HGF/MET signaling, we used mRNA sequencing and antibody-based techniques for identifying checkpoint ligands in six HNSCC tumor cell lines. Furthermore, we compared our results to mRNA sequencing data. From the checkpoint ligands we investigated, VISTA was expressed the highest at the RNA level and was also the most ubiquitously expressed. PD-L2 and B7-H3 were expressed comparably lower and were not present in all cell lines to the same extent. B7-H4, however, was only detectable in the Detroit 562 cell line. Concerning the effect of HGF on the ligand levels, PD-L2 expression was enhanced with HGF stimulation, whereas other checkpoint ligand levels decreased with stimulation. B7-H4 levels in the Detroit 562 cell line drastically decreased with HGF stimulation. This is of interest because both the checkpoint ligand and the growth factor are reported to be connected to epithelial-mesenchymal transition in the literature.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Fator de Crescimento de Hepatócito , Proteínas de Checkpoint Imunológico , Proteínas Proto-Oncogênicas c-met , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Linhagem Celular Tumoral , Proteínas de Checkpoint Imunológico/metabolismo , Proteínas de Checkpoint Imunológico/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígenos B7/metabolismo , Antígenos B7/genética
11.
J Biol Chem ; 298(3): 101630, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085554

RESUMO

Cancer invasion and metastasis are the major causes of cancer patient mortality. Various growth factors, including hepatocyte growth factor (HGF), are known to promote cancer invasion and metastasis, but the regulatory mechanisms involved are not fully understood. Here, we show that HGF-promoted migration and invasion of breast cancer cells are regulated by CUB domain-containing protein 1 (CDCP1), a transmembrane activator of SRC kinase. In metastatic human breast cancer cell line MDA-MB-231, which highly expresses the HGF receptor MET and CDCP1, we show that CDCP1 knockdown attenuated HGF-induced MET activation, followed by suppression of lamellipodia formation and cell migration/invasion. In contrast, in the low invasive/nonmetastatic breast cancer cell line T47D, which had no detectable MET and CDCP1 expression, ectopic MET expression stimulated the HGF-dependent activation of invasive activity, and concomitant CDCP1 expression activated SRC and further promoted invasive activity. In these cells, CDCP1 expression dramatically activated HGF-induced membrane remodeling, which was accompanied by activation of the small GTPase Rac1. Analysis of guanine nucleotide exchange factors revealed that ARHGEF7 was specifically required for CDCP1-dependent induction of HGF-induced invasive ability. Furthermore, immunofluorescence staining demonstrated that CDCP1 coaccumulated with ARHGEF7. Finally, we confirmed that the CDCP1-SRC axis was also crucial for HGF and ARHGEF7-RAC1 signaling in MDA-MB-231 cells. Altogether, these results demonstrate that the CDCP1-SRC-ARHGEF7-RAC1 pathway plays an important role in the HGF-induced invasion of a subset of breast cancer cells.


Assuntos
Antígenos de Neoplasias , Neoplasias da Mama , Fator de Crescimento de Hepatócito , Fatores de Troca de Nucleotídeo Guanina Rho , Quinases da Família src , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Quinases da Família src/genética , Quinases da Família src/metabolismo
12.
Mol Carcinog ; 62(9): 1417-1427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37265438

RESUMO

Incessant ovulation is believed to be a potential cause of epithelial ovarian cancer (EOC). Our previous investigations have shown that insulin-like growth factor (IGF2) and hepatocyte growth factor (HGF) in the ovulatory follicular fluid (FF) contributed to the malignant transformation initiated by p53 mutations. Here we examined the individual and synergistic impacts of IGF2 and HGF on enhancing the malignant properties of high-grade serous carcinoma (HGSC), the most aggressive type of EOC, and its precursor lesion, serous tubal intraepithelial carcinoma (STIC). In a mouse xenograft co-injection model, we observed that FF co-injection induced tumorigenesis of STIC-mimicking cells, FE25. Co-injection with IGF2 or HGF partially recapitulated the tumorigenic effects of FF, but co-injection with both resulted in a higher tumorigenic rate than FF. We analyzed the different transformation phenotypes influenced by these FF growth signals through receptor inhibition. The IGF signal was necessary for clonogenicity, while the HGF signal played a crucial role in the migration and invasion of STIC and HGSC cells. Both signals were necessary for the malignant phenotype of anchoring-independent growth but had little impact on cell proliferation. The downstream signals responsible for these HGF activities were identified as the tyrosine-protein kinase Met (cMET)/mitogen-activated protein kinase and cMET/AKT pathways. Together with the previous finding that the FF-IGF2 could mediate clonogenicity and stemness activities via the IGF-1R/AKT/mammalian target of rapamycin and IGF-1R/AKT/NANOG pathways, respectively, this study demonstrated the cooperation of the FF-sourced IGF and HGF growth signals in the malignant transformation and progression of HGSC through both common and distinct signaling pathways. These findings help develop targeted prevention of HGSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Líquido Folicular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/genética , Células Epiteliais/metabolismo , Carcinogênese/patologia , Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/metabolismo , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/patologia , Transformação Celular Neoplásica/patologia , Mamíferos/metabolismo
13.
Toxicol Appl Pharmacol ; 459: 116360, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572227

RESUMO

BACKGROUND: Perfluorooctanoic acid (PFOA(is used in several industrial applications, and serves as a surfactant. It is persistent in the environment and is resistant to typical environmental degradation processes. Exposure to this contaminant has been shown to reduce the normal gastrointestinal flora, especially Lactobacillus and Bifidobacterium. Since exposure to this contaminant still occurs and it has been suggested that gut microbiota imbalance might accelerate the progression of liver disorders, we aimed to study the effect of synbiotics pretreatment on PFOA-induced hepatotoxicity. METHOD AND MATERIALS: Herein, C57BL/6 J mice were administered 1, 5, 10, and 20 mg PFOA per kg body weight orally by gavage once daily up to 28 days. Another group was pretreated with synbiotic 4 h before receiving 10 mg PFOA/kg. Also, a control group received 2% Tween 80 orally as a vehicle of PFOA during the study. Plasma ALT, AST, TNF-α, HGF, IL-6, and IFN-γ were measured every week. In addition, a liver histopathological assessment was performed at the end of exposure studies. RESULTS: It was observed that exposure to PFOA can trigger inflammatory markers such as TNF-α, HGF, IL-6, and IFN-γ as well as hepatic enzymes AST and ALT in comparison with the control group. Synbiotic pretreatment prevented or statistically significant reduced the release of the inflammatory markers and the liver enzymes compared to PFOA only treated group. CONCLUSION: It could be inferred that having intact gut flora or even using synbiotic complements containing Lactobacillus, Bifidobacterium, and Streptococcus plus fructooligosaccharides as prebiotic is an appropriate strategy to reduce the negative effects of PFOA exposure.


Assuntos
Hepatopatias , Simbióticos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Fígado , Hepatopatias/metabolismo , Bifidobacterium
14.
Cell Commun Signal ; 21(1): 313, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919751

RESUMO

The mutation of MET plays a crucial role in the initiation of cancer, while the Hedgehog (Hh) pathway also plays a significant role in cell differentiation and the maintenance of tumor stem cells. Conventional chemotherapy drugs are primarily designed to target the majority of cell populations within tumors rather than tumor stem cells. Consequently, after a brief period of remission, tumors often relapse. Moreover, the exclusive targeting of tumor stemness cell disregards the potential for other tumor cells to regain stemness and acquire drug resistance. As a result, current drugs that solely target the HGF/c-MET axis and the Hh pathway demonstrate only moderate efficacy in specific types of cancer. Mounting evidence indicates that these two pathways not only play important roles in cancer but also exert significant influence on the development of resistance to single-target therapies through the secretion of their own ligands. In this comprehensive review, we analyze and compare the potential impact of the Hh pathway on the tumor microenvironment (TME) in HGF/c-MET-driven tumor models, as well as the interplay between different cell types. Additionally, we further substantiate the potential and necessity of dual-pathway combination therapy as a critical target in MET addicted cancer treatment. Video Abstract.


Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Mutação/genética , Microambiente Tumoral
15.
Pharmacol Res ; 188: 106640, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627004

RESUMO

Inflammation resolution is an active process that involves cellular events such as apoptosis and efferocytosis, which are key steps in the restoration of tissue homeostasis. Hepatocyte growth factor (HGF) is a growth factor mostly produced by mesenchymal-origin cells and has been described to act via MET receptor tyrosine kinase. The HGF/MET axis is essential for determining the progression and severity of inflammatory and immune-mediated disorders. Here, we investigated the effect of blocking the HGF/MET signalling pathway by PF-04217903 on the resolution of established models of neutrophilic inflammation. In a self-resolving model of gout induced by MSU crystals, HGF expression on periarticular tissue peaked at 12 h, the same time point that neutrophils reach their maximal accumulation in the joints. The HGF/MET axis was activated in this model, as demonstrated by increased levels of MET phosphorylation in neutrophils (Ly6G+ cells). In addition, the number of neutrophils was reduced in the knee exudate after PF-04217903 treatment, an effect accompanied by increased neutrophil apoptosis and efferocytosis and enhanced expression of Annexin A1, a key molecule for inflammation resolution. Reduced MPO activity, IL-1ß and CXCL1 levels were also observed in periarticular tissue. Importantly, PF-04217903 reduced the histopathological score and hypernociceptive response. Similar findings were obtained in LPS-induced neutrophilic pleurisy. In human neutrophils, the combined use of LPS and HGF increased MET phosphorylation and provided a prosurvival signal, whereas blocking MET with PF-04217903 induced caspase-dependent neutrophil apoptosis. Taken together, these data demonstrate that blocking HGF/MET signalling may be a potential therapeutic strategy for inducing the resolution of neutrophilic inflammatory responses.


Assuntos
Fator de Crescimento de Hepatócito , Neutrófilos , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/uso terapêutico , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-met/metabolismo , Homeostase
16.
J Neurooncol ; 163(1): 207-218, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37162666

RESUMO

INTRODUCTION: HGF/c-MET signaling is a significant driver of glioblastoma (GBM) growth and disease progression. Unfortunately, c-MET targeted therapies have been found to be largely ineffective suggesting additional redundant mechanisms of c-MET activation. METHODS: Utilizing RNA-sequencing (RNA-seq) and ribosome profiling analyses of circular RNAs, circ-HGF (hsa_circ_0080914) was identified as markedly upregulated in primary GBM and found to potentially encode an HGF protein variant (C-HGF) 119 amino acids in length. This candidate HGF variant was characterized and evaluated for its ability to mediate c-MET activation and regulate PDX GBM cell growth, motility and invasive potential in vitro and tumor burden in intracranial xenografts in mice. RESULTS: An internal ribosome entry site (IRES) was identified within the circ-HGF RNA which mediated translation of the cross-junctional ORF encoding C-HGF and was observed to be highly expressed in GBM relative to normal brain tissue. C-HGF was also found to be secreted from GBM cells and concentrated cell culture supernatants or recombinant C-HGF activated known signaling cascades downstream of c-MET. C-HGF was shown to interact directly with the c-MET receptor resulting in its autophosphorylation and activation in PDX GBM lines. Knockdown of C-HGF resulted in suppression of c-MET signaling and marked inhibition of cell growth, motility and invasiveness, whereas overexpression of C-HGF displayed the opposite effects. Additionally, modulation of C-HGF expression regulated tumor growth in intracranial xenografted PDX GBM models. CONCLUSIONS: These results reveal an alternative mechanism of c-MET activation via a circular RNA encoded HGF protein variant which is relevant in GBM biology. Targeting C-HGF may offer a promising approach for GBM clinical management.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , RNA , Transdução de Sinais , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
17.
Immunol Invest ; 52(6): 735-748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409941

RESUMO

BACKGROUND: CAR-T is emerging as an effective treatment strategy for hematologic malignancies, however its effectiveness for treating solid tumors, such as Hepatocellular Carcinoma (HCC) is limited. Here, we screened a variety of CAR-T cells that target c-Met to investigate their potential to induce HCC cell death in vitro. METHODS: Human T cells were transduced to express CARs by lentiviral vector transfection. c-Met expression in human HCC cell lines and CARs expression were monitored by flow cytometry. Tumor cell killing was evaluated by Luciferase Assay System Kit. The concentrations of cytokine were tested by Enzyme-linked immunosorbent assays. Knock down and overexpression studies targeting c-Met were conducted to assess the targeting specificity of CARs. RESULTS: We found that CAR T cells expressing a minimal amino-terminal polypeptide sequence comprising the first kringle (kringle 1) domain (denoted as NK1 CAR-T cells), efficiently killed HCC cell lines that expressed high levels of the HGF receptor c-Met. Furthermore, we report that while NK1 CAR-T cells were efficient at targeting SMMC7221 cells for destruction, and its potency was significantly attenuated in parallel experiments with cells stably expressing short hairpin RNAs (shRNAs) that suppressed c-Met expression. Correspondingly, overexpression of c-Met in the embryonic kidney cell line HEK293T led to their enhanced killing by NK1 CAR-T cells. CONCLUSION: Our studies demonstrate that a minimal amino-terminal polypeptide sequence comprising the kirngle1 domain of HGF is highly relevant to the design of effective CAR-T cell therapies that kill HCC cells expressing high levels of c-Met.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células HEK293 , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Citocinas/metabolismo , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento de Hepatócito/metabolismo
18.
J Biochem Mol Toxicol ; 37(4): e23302, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36636782

RESUMO

Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses. In the present work, we were focused on characterizing the response induced by HGF and its protective mechanism in the RINm5F pancreatic cell line treated with ethanol and acetaldehyde. RINm5F cells were treated with ethanol or acetaldehyde for 12 h in the presence or not of HGF (50 ng/ml). Cells under HGF treatment decreased the content of reactive oxygen species and lipid peroxidation induced by both toxics, improving cell viability. This effect was correlated to an improvement in insulin expression impaired by ethanol and acetaldehyde. Using a specific inhibitor of Erk1/2 abrogated the effects elicited by the growth factor. In conclusion, the work provides mechanistic evidence of the HGF-induced-protective response to the alcohol-induced damage in the main cellular component of the endocrine pancreas.


Assuntos
Acetaldeído , Etanol , Acetaldeído/toxicidade , Acetaldeído/metabolismo , Linhagem Celular , Etanol/toxicidade , Fator de Crescimento de Hepatócito , Pâncreas/metabolismo , Sistema de Sinalização das MAP Quinases
19.
Exp Cell Res ; 419(2): 113323, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030968

RESUMO

The incidence and mortality of epithelial ovarian cancer (EOC) are increasing in Taiwan and worldwide. The prognosis of this disease has improved little in the last few decades due to insufficient knowledge of the etiology. Previous studies on the role of ovulation in the development of EOC have unveiled IGF2, HGF, and other carcinogens in ovulatory follicular fluid (FF) that exert transformation activities on the exposed fallopian tube fimbria epithelium. However, an orthotopic proof in an animal model is lacking. By using the murine ID8 EOC cells and the syngenic transplantation model, this study explored the effect of FF on the oncogenesis of mouse ovarian cancer. We found FF promoted clonogenicity and anchorage-independent growth of ID8 cells, largely through the IGF-1R and cMET signaling. In contrast, FF modestly promoted cell proliferation independent of the two signals and did not affect cell migration and invasion. Transplantation of ID8 cells into the ovarian bursa of C57BL6/J mice orthotopically grew ovarian tumors and metastasized to the peritoneum with ascites formation. The tumorigenic rate and severity of the disease were positively correlated with the level of IGF-1R and cMET receptors on the cell surface. Our data demonstrated that ovulation, through the signaling of IGF/IGF-1R and HGF/cMET, promotes oncogenic phenotypes in a murine EOC model. The results provide further proof of the carcinogenic effect of ovulation in the development of EOC.


Assuntos
Neoplasias Ovarianas , Animais , Carcinogênese , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Neoplasias Ovarianas/patologia , Ovulação , Transdução de Sinais
20.
Cell Mol Life Sci ; 79(3): 144, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188596

RESUMO

In the cornea, the epithelial basement membrane (EBM) and corneal endothelial Descemet's basement membrane (DBM) critically regulate the localization, availability and, therefore, the functions of transforming growth factor (TGF)ß1, TGFß2, and platelet-derived growth factors (PDGF) that modulate myofibroblast development. Defective regeneration of the EBM, and notably diminished perlecan incorporation, occurs via several mechanisms and results in excessive and prolonged penetration of pro-fibrotic growth factors into the stroma. These growth factors drive mature myofibroblast development from both corneal fibroblasts and bone marrow-derived fibrocytes, and then the persistence of these myofibroblasts and the disordered collagens and other matrix materials they produce to generate stromal scarring fibrosis. Corneal stromal fibrosis often resolves completely if the inciting factor is removed and the BM regenerates. Similar defects in BM regeneration are likely associated with the development of fibrosis in other organs where perlecan has a critical role in the modulation of signaling by TGFß1 and TGFß2. Other BM components, such as collagen type IV and collagen type XIII, are also critical regulators of TGF beta (and other growth factors) in the cornea and other organs. After injury, BM components are dynamically secreted and assembled through the cooperation of neighboring cells-for example, the epithelial cells and keratocytes for the corneal EBM and corneal endothelial cells and keratocytes for the corneal DBM. One of the most critical functions of these reassembled BMs in all organs is to modulate the pro-fibrotic effects of TGFßs, PDGFs and other growth factors between tissues that comprise the organ.


Assuntos
Membrana Basal/patologia , Doenças da Córnea/patologia , Fibrose/patologia , Proteoglicanas de Heparan Sulfato/deficiência , Fator de Crescimento Transformador beta/metabolismo , Animais , Membrana Basal/metabolismo , Doenças da Córnea/genética , Doenças da Córnea/metabolismo , Fibrose/genética , Fibrose/metabolismo , Humanos , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA