Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Mol Med ; 28(8): e18307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613342

RESUMO

Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Humanos , Acetilação , Acetiltransferases , Povo Asiático/genética , China , Mucopolissacaridoses/genética , Mucopolissacaridose III/genética
2.
J Transl Med ; 21(1): 437, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407981

RESUMO

BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.


Assuntos
Mucopolissacaridose III , Animais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Encéfalo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Ovinos , Terapia Genética
3.
Am J Med Genet A ; 191(9): 2354-2363, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596900

RESUMO

Mucopolysaccharidosis type III (MPS III) is a rare autosomal recessive lysosomal storage disorder characterized by progressive neurocognitive deterioration. There are four MPS III subtypes (A, B, C, and D) that are clinically indistinguishable with variable rates of progression. A retrospective analysis was carried out on 34 patients with MPS III types at Cairo University Children's Hospital. We described the clinical, biochemical, and molecular spectrum of MPS III patients. Of 34 patients, 22 patients had MPS IIIB, 7/34 had MPS IIIC, 4/34 had MPS IIIA, and only 1 had MPS IIID. All patients presented with developmental delay/intellectual disability, and speech delay. Ataxia was reported in a patient with MPS IIIC, and cerebellar atrophy in a patient with MPS IIIA. We reported 25 variants in the 4 MPS III genes, 11 of which were not previously reported. This is the first study to analyze the clinical and genetic spectrum of MPS III patients in Egypt. This study explores the genetic map of MPS III in the Egyptian population. It will pave the way for a national registry for rare diseases in Egypt, a country with a high rate of consanguineous marriage and consequently a high rate of autosomal recessive disorders.


Assuntos
Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose III , Criança , Humanos , Egito/epidemiologia , Estudos Retrospectivos , Ataxia
4.
Am J Med Genet C Semin Med Genet ; 184(3): 631-643, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32770643

RESUMO

Pathogenic variants in the gene HGSNAT (heparan-α-glucosaminide N-acetyltransferase) have been reported to underlie two distinct recessive conditions, depending on the specific genotype, mucopolysaccharidosis type IIIC (MPSIIIC)-a severe childhood-onset lysosomal storage disorder, and adult-onset nonsyndromic retinitis pigmentosa (RP). Here we describe the largest cohort to-date of HGSNAT-associated nonsyndromic RP patients, and describe their retinal phenotype, leukocyte enzymatic activity, and likely pathogenic genotypes. We identified biallelic HGSNAT variants in 17 individuals (15 families) as the likely cause of their RP. None showed any other symptoms of MPSIIIC. All had a mild but significant reduction of HGSNAT enzyme activity in leukocytes. The retinal condition was generally of late-onset, showing progressive degeneration of a concentric area of paramacular retina, with preservation but reduced electroretinogram responses. Symptoms, electrophysiology, and imaging suggest the rod photoreceptor to be the cell initially compromised. HGSNAT enzymatic testing was useful in resolving diagnostic dilemmas in compatible patients. We identified seven novel sequence variants [p.(Arg239Cys); p.(Ser296Leu); p.(Phe428Cys); p.(Gly248Ala); p.(Gly418Arg), c.1543-2A>C; c.1708delA], three of which were considered to be retina-disease-specific alleles. The most prevalent retina-disease-specific allele p.(Ala615Thr) was observed heterozygously or homozygously in 8 and 5 individuals respectively (7 and 4 families). Two siblings in one family, while identical for the HGSNAT locus, but discordant for retinal disease, suggest the influence of trans-acting genetic or environmental modifying factors.


Assuntos
Acetiltransferases/genética , Mucopolissacaridose III/genética , Doenças Retinianas/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Criança , Feminino , Genótipo , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Mucopolissacaridose III/complicações , Mucopolissacaridose III/patologia , Linhagem , Retina/patologia , Doenças Retinianas/complicações , Doenças Retinianas/patologia , Retinose Pigmentar/complicações , Retinose Pigmentar/patologia , Adulto Jovem
5.
Ophthalmic Genet ; 45(2): 167-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37592806

RESUMO

BACKGROUND: Variants in HGSNAT have historically been associated with syndromic mucopolysaccharidosis type IIIC (MPSIIIC) but more recent studies demonstrate cases of HGSNAT-related non-syndromic retinitis pigmentosa. We describe and expand the genotypic and phenotypic spectrum of this disease. MATERIALS AND METHODS: This is a retrospective, observational, case series of 11 patients with pericentral retinitis pigmentosa due to variants in HGSNAT gene without a syndromic diagnosis of MPSIIIC. We reviewed ophthalmologic data extracted from medical records, genetic testing, color fundus photos, fundus autofluorescence (FAF), and optical coherence tomography (OCT). RESULTS: Of the 11 patients, the mean age was 52 years (range: 26-78). The mean age of ophthalmologic symptoms onset was 45 years (range: 15-72). The visual acuity varied from 20/20 to 20/80 (mean 20/30 median 20/20). We described five novel variants in HGSNAT: c.715del (p.Arg239Alafs *37), c.118 G>A (p.Asp40Asn), c.1218_1220delinsTAT, c.1297A>G (p.Asn433Asp), and c.1726 G>T (p.Gly576*). CONCLUSIONS: HGSNAT has high phenotypic heterogeneity. Data from our cohort showed that all patients who had at least one variant of c.1843 G>A (p.Ala615Thr) presented with the onset of ocular symptoms after the fourth decade of life. The two patients with onset of ocular symptoms before the fourth decade did not carry this variant. This may suggest that c.1843 G>A variant is associated with a later onset of retinopathy.


Assuntos
Retinose Pigmentar , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Acetiltransferases/genética , Fundo de Olho , Testes Genéticos , Genótipo , Mutação , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Estudos Retrospectivos , Tomografia de Coerência Óptica
6.
Children (Basel) ; 10(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136122

RESUMO

Congenital dermal melanocytosis (DM) represents a common birthmark mainly found in children of Asian and darker skin phototype descent, clinically characterized by an oval blue-grey macule or macules, commonly located on the lumbosacral area. In rare DM cases, when presenting with diffuse macules persisting during the first years of life, it could represent a cutaneous feature of mucopolysaccharidoses (MPS). Extensive congenital DM is actually associated with Hurler syndrome (MPS type I) and Hunter syndrome (MPS type II), although several reports also described this association with MPS type VI and other lysosomal storage disorders (LySD), including GM1 gangliosidosis, mucolipidosis, Sandhoff disease, and Niemann-Pick disease. Here, we present the case of a two-year-old boy presenting with extensive dermal melanocytosis, generalized hypertrichosis, and chronic itch, harboring a heterozygous variant of uncertain significance, NM_152419.3: c.493C>T (p.Pro165Ser), in the exon 4 of HGSNAT gene, whose mutations are classically associated with MPS IIIC, also known as Sanfilippo syndrome. This is the first report that highlights the association between extensive congenital DM and MPS type IIIC, as well as a pathogenetic link between heterozygous LySD carrier status and congenital DM. We speculate that some cases of extensive congenital DM could be related to heterozygous LySD carriers, as a manifestation of a mild clinical phenotype.

7.
Case Rep Ophthalmol ; 12(2): 622-628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326763

RESUMO

A 74-year-old woman with a history of rheumatoid arthritis using hydroxychloroquine presented with gradually progressive decreased vision in both eyes and was found to have a bilateral maculopathy. Initial genetic testing was negative, and after discussing the low likelihood of her severe findings being secondary to her relatively low hydroxychloroquine exposure, the possibility of an autoimmune retinopathy was entertained. Updated data on the genetic testing reclassified one of her mutations in HGSNAT as pathogenic. This case highlights the value of genetic testing and the need to keep a high index of suspicion even after initial negative results, given the fact that our knowledge of mutations leading to retinal degeneration is constantly evolving.

8.
Genes (Basel) ; 8(10)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981474

RESUMO

Pericentral retinitis pigmentosa (RP) is an atypical form of RP that affects the near-peripheral retina first and tends to spare the far periphery. This study was performed to further define the genetic basis of this phenotype. We identified a cohort of 43 probands with pericentral RP based on a comprehensive analysis of their retinal phenotype. Genetic analyses of DNA samples from these patients were performed using panel-based next-generation sequencing, copy number variations, and whole exome sequencing (WES). Mutations provisionally responsible for disease were found in 19 of the 43 families (44%) analyzed. These include mutations in RHO (five patients), USH2A (four patients), and PDE6B (two patients). Of 28 putatively pathogenic alleles, 15 (54%) have been previously identified in patients with more common forms of typical RP, while the remaining 13 mutations (46%) were novel. Burden testing of WES data successfully identified HGSNAT as a cause of pericentral RP in at least two patients, suggesting it is also a relatively common cause of pericentral RP. While additional sequencing might uncover new genes specifically associated with pericentral RP, the current results suggest that genetically pericentral RP is not a separate clinical entity, but rather is part of the spectrum of mild RP phenotypes.

9.
Dis Model Mech ; 9(9): 999-1013, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491071

RESUMO

Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe lysosomal storage disease caused by deficiency in activity of the transmembrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT) that catalyses the N-acetylation of α-glucosamine residues of heparan sulfate. Enzyme deficiency causes abnormal substrate accumulation in lysosomes, leading to progressive and severe neurodegeneration, somatic pathology and early death. There is no cure for MPSIIIC, and development of new therapies is challenging because of the unfeasibility of cross-correction. In this study, we generated a new mouse model of MPSIIIC by targeted disruption of the Hgsnat gene. Successful targeting left LacZ expression under control of the Hgsnat promoter, allowing investigation into sites of endogenous expression, which was particularly prominent in the CNS, but was also detectable in peripheral organs. Signs of CNS storage pathology, including glycosaminoglycan accumulation, lysosomal distension, lysosomal dysfunction and neuroinflammation were detected in 2-month-old animals and progressed with age. Glycosaminoglycan accumulation and ultrastructural changes were also observed in most somatic organs, but lysosomal pathology seemed most severe in liver. Furthermore, HGSNAT-deficient mice had altered locomotor and exploratory activity and shortened lifespan. Hence, this animal model recapitulates human MPSIIIC and provides a useful tool for the study of disease physiopathology and the development of new therapeutic approaches.


Assuntos
Progressão da Doença , Mucopolissacaridose III/patologia , Acetiltransferases/deficiência , Acetiltransferases/metabolismo , Animais , Comportamento Animal , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Homeostase , Humanos , Inflamação/patologia , Longevidade , Lisossomos/metabolismo , Lisossomos/patologia , Lisossomos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Mucopolissacaridose III/enzimologia , Especificidade de Órgãos , Análise de Sobrevida
10.
Gene ; 592(1): 36-42, 2016 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-27452122

RESUMO

Acetyl-CoA:α-glucosaminide N-acetyltransferase (N-acetyltransferase) is a lysosomal membrane enzyme that catalyzes a key step in the lysosomal degradation of heparan sulfate. Its deficiency causes Sanfilippo syndrome type IIIC (Mucopolysaccharidosis type IIIC, MPS IIIC). Here we characterize the promoter region of HGSNAT, the gene encoding N-acetyltransferase, which is located in the pericentromeric region of chromosome 8. We show that HGSNAT transcription is driven by a TATA-less promoter whose key elements are contained within the 1054bp region upstream of exon 1. About 400 bases of the region's 3'-prime end overlap with an unmethylated CpG island. Reduced reporter activities from promoter serial deletion constructs suggested strong regulatory elements at positions -101 to -20bp and -1073 to -716bp of the downstream initiation codon (DS-ATG). Targeted mutagenesis of the first Specificity protein 1-A (Sp1-A) of the six in silico-predicted Sp1 sites in the region flanking the major transcription start sites (TSSs, +50/-101) led to a 55% decrease of reporter activity, while inactivation of each of Sp1-B and Sp1-C resulted in its almost two-fold increase. The binding of Sp1 to the region was confirmed by chromatin immunoprecipitation (ChIP). Overall, this confirms that Sp1 is important for regulation of the HGSNAT promoter. Promoter fragments in antisense orientation (constructs pGL4 -20/-1305 and pGL4 +50/-1305) led to reporter activities of about 50% of the pGL4 -1305/-20 activity, implying divergent initiation of transcription at the promoter. We identified two main TSSs at positions +1 and -15 from DS-ATG using Rapid amplification of cDNA ends (5'RACE). Transcripts initiating at the TSSs thus contain only DS-ATG. Five patients from our MPS IIIC cohort (n=23) carried the rs4523300 promoter variant and one the rs149596192 promoter variant. Both variants lowered the expression of the reporter down to 68% and 59%, respectively. However, white blood cell (WBC) N-acetyltransferase activities in individuals carrying the variants did not significantly differ from homozygotes for the wild-type alleles, suggesting only a partial impact of transcriptional regulation on N-acetyltransferase activities in vivo.


Assuntos
Acetiltransferases/genética , Mucopolissacaridose III/genética , Polimorfismo de Nucleotídeo Único , TATA Box , Sítio de Iniciação de Transcrição , Estudos de Casos e Controles , Células Hep G2 , Humanos , Ligação Proteica , Fator de Transcrição Sp1/metabolismo
11.
Ann Lab Med ; 33(1): 75-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23301227

RESUMO

Mucopolysaccharidosis (MPS) III has 4 enzymatically distinct forms (A, B, C, and D), and MPS IIIC, also known as Sanfilippo C syndrome, is an autosomal recessive lysosomal storage disease caused by a deficiency of heparan acetyl-CoA:alpha-glucosaminide N-acetyltransferase (HGSNAT). Here, we report a case of MPS IIIC that was confirmed by molecular genetic analysis. The patient was a 2-yr-old girl presenting with skeletal deformity, hepatomegaly, and delayed motor development. Urinary excretion of glycosaminoglycan (GAG) was markedly elevated (984.4 mg GAG/g creatinine) compared with the age-specific reference range (<175 mg GAG/g creatinine), and a strong band of heparan sulfate was recognized on performing thin layer chromatography. HGSNAT enzyme activity in leukocytes was 0.7 nmol/17 hr/mg protein, which was significantly lower than the reference range (8.6-32 nmol/17 hr/mg protein). PCR and direct sequencing of the HGSNAT gene showed 2 mutations: c.234+1G>A (IVS2+1G>A) and c.1150C>T (p.Arg384*). To the best of our knowledge, this is the first case of MPS IIIC to be confirmed by clinical, biochemical, and molecular genetic findings in Korea.


Assuntos
Acetiltransferases/genética , Povo Asiático/genética , Mucopolissacaridose III/diagnóstico , Sequência de Bases , Pré-Escolar , Cromatografia em Camada Fina , Feminino , Glicosaminoglicanos/urina , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Mucopolissacaridose III/diagnóstico por imagem , Mucopolissacaridose III/genética , Mutação , Radiografia , República da Coreia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA