Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Transl Med ; 21(1): 323, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179292

RESUMO

BACKGROUND: Pericyte-myofibroblast transition (PMT) has been confirmed to contribute to renal fibrosis in several kidney diseases, and transforming growth factor-ß1 (TGF-ß1) is a well-known cytokine that drives PMT. However, the underlying mechanism has not been fully established, and little is known about the associated metabolic changes. METHODS: Bioinformatics analysis was used to identify transcriptomic changes during PMT. PDGFRß + pericytes were isolated using MACS, and an in vitro model of PMT was induced by 5 ng/ml TGF-ß1. Metabolites were analyzed by ultraperformance liquid chromatography (UPLC) and tandem mass spectrometry (MS). 2-Deoxyglucose (2-DG) was used to inhibit glycolysis via its actions on hexokinase (HK). The hexokinase II (HKII) plasmid was transfected into pericytes for HKII overexpression. LY294002 or rapamycin was used to inhibit the PI3K-Akt-mTOR pathway for mechanistic exploration. RESULTS: An increase in carbon metabolism during PMT was detected through bioinformatics and metabolomics analysis. We first detected increased levels of glycolysis and HKII expression in pericytes after stimulation with TGF-ß1 for 48 h, accompanied by increased expression of α-SMA, vimentin and desmin. Transdifferentiation was blunted when pericytes were pretreated with 2-DG, an inhibitor of glycolysis. The phosphorylation levels of PI3K, Akt and mTOR were elevated during PMT, and after inhibition of the PI3K-Akt-mTOR pathway with LY294002 or rapamycin, glycolysis in the TGF-ß1-treated pericytes was decreased. Moreover, PMT and HKII transcription and activity were blunted, but the plasmid-mediated overexpression of HKII rescued PMT inhibition. CONCLUSIONS: The expression and activity of HKII as well as the level of glycolysis were increased during PMT. Moreover, the PI3K-Akt-mTOR pathway regulates PMT by increasing glycolysis through HKII regulation.


Assuntos
Transdução de Sinais , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hexoquinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pericitos/metabolismo , Miofibroblastos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo , Glicólise
2.
Eur Arch Otorhinolaryngol ; 280(4): 1841-1854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36380093

RESUMO

PURPOSE: The mechanism underlying malignant transformation of vocal fold leukoplakia (VFL) and the precise role of the expression of pepsin in VFL remain unclear. This study aimed to investigate the effects of acidified pepsin on VFL epithelial cell growth and migration, and also identify pertinent molecular mechanisms. METHODS: Immunochemistry and Western blotting were performed to measure glucose transporter type 1 (GLUT1), monocarboxylate transporters 4 (MCT4), and Hexokinase-II (HK-II) expressions. Cell viability, cell cycle, apoptosis, and migration were investigated by CCK-8 assay, flow cytometry and Transwell chamber assay, respectively. Glycolysis-related contents were determined using the corresponding kits. Mitochondrial HK-II was photographed under a confocal microscope using Mito-Tracker Red. RESULTS: It was found: the expression of pepsin and proportion of pepsin+ cells in VFL increased with the increased dysplasia grade; acidified pepsin enhanced cell growth and migration capabilities of VFL epithelial cells, reduced mitochondrial respiratory chain complex I activity and oxidative phosphorylation, and enhanced aerobic glycolysis and GLUT1 expression in VFL epithelial cells; along with the transfection of GLUT1 overexpression plasmid, 18FFDG uptake, lactate secretion and growth and migration capabilities of VFL epithelial cell were increased; this effect was partially blocked by the glycolysis inhibitor 2-deoxy-glucose; acidified pepsin increased the expression of HK-II and enhanced its distribution in mitochondria of VFL epithelial cells. CONCLUSION: It was concluded that acidified pepsin enhances VFL epithelial cell growth and migration abilities by reducing mitochondrial respiratory complex I activity and promoting metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis.


Assuntos
Pepsina A , Prega Vocal , Humanos , Transportador de Glucose Tipo 1 , Glicólise , Células Epiteliais , Leucoplasia
3.
Adv Exp Med Biol ; 1280: 219-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791985

RESUMO

Head and neck squamous cell carcinoma (HNSCC) glycolysis is an important factor for the advancement of the disease and metastasis. Upregulation of glycolysis leads to decreased sensitivity to chemotherapy and radiation. HNSCC cells maintain constitutive glycolytic flux generating metabolic intermediates for the synthesis of amino acids, nucleotides, and fats for cell survival and disease progression. There are several pathways such as PI3K/Akt, EGFR, and JAK-STAT that contribute a major role in metabolic alteration in HNSCC. Recent studies have demonstrated that cancer-associated fibroblasts abundant in the HNSCC tumor microenvironment play a major role in HNSCC metabolic alteration via hepatocyte growth factor (HGF)/c-Met cross signaling. Despite therapeutic advancement, HNSCC lacks broad range of therapeutic interventions for the treatment of the disease. Thus, understanding the different key players involved in glucose metabolism and targeting them would lead to the development of novel drugs for the treatment of HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Glicólise , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Fosfatidilinositol 3-Quinases/genética , Microambiente Tumoral
4.
Semin Cancer Biol ; 56: 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29248538

RESUMO

Extensive growth of cancer in humans is a major cause of death. Numerous studies are being conducted to improve the early diagnosis, prevention, and treatment of cancer. Recent technological advancements in medical science and research indicate molecular target therapy holds much promise in cancer treatment. In the past, therapeutic and diagnostic targeting of non-glycolytic and glycolytic enzymes in cancer have been successful, and discoveries of biomarker enzymes in cancer hold promise for therapeutic treatments. In this review, we discuss the roles of several cancer-associated enzymes that could potentially act as therapeutic targets, and place special focus on non-glycolytic and glycolytic enzymes. This review indicates that the targeting of metabolic signaling offers a promising means of developing novel anti-cancer therapies.


Assuntos
Biomarcadores Tumorais/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Neoplasias/etiologia , Neoplasias/prevenção & controle
5.
Biochem Biophys Res Commun ; 529(1): 15-22, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32560813

RESUMO

Glioma is a leading cause of central nervous system malignant tumor-associated deaths in the world. However, the molecular mechanisms for glioma progression are still unclear, lacking effective therapeutic strategies. Gomisin J (GomJ) is a derivative of lignan compound, and shows regulatory effects on virus, oxidative stress and tumor progression. However, the role of GomJ in the meditation of glioma progression has not been explored. In this study, we found that GomJ markedly reduced the proliferation of glioma cell lines. Mitochondrial apoptosis was highly induced by GomJ, as evidenced by the significantly up-regulated expression of cytoplastic Cyto-c and cleaved Caspase-3. In addition, mitochondrial membrane potential (MMP) and oxidative stress were highly triggered in GomJ-incubated glioma cells, accompanied with the glycolysis suppression. Importantly, we found that GomJ could dramatically reduce the expression of hexokinase II (HKII) in glioma cells. At the same time, the dissociation of HKII from voltage-dependent anion channel (VDAC) in mitochondria was markedly induced by GomJ, contributing to glycolytic repression. The in vivo experiments confirmed that GomJ obviously reduced the growth of glioma with HKII reduction and few side effects. Taken together, these results demonstrated that GomJ could inhibit the proliferation, induce apoptosis and restrain HKII-regulated glycolysis during glioma progression. Herein, GomJ with few toxicity might be served as a potential therapeutic strategy for the treatment of glioma in humans.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glioma/tratamento farmacológico , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Glioma/metabolismo , Glioma/patologia , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Schisandra/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Carcinog ; 55(9): 1317-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26258875

RESUMO

In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Flavonoides/farmacologia , Hexoquinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicólise/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos
7.
Exp Parasitol ; 171: 42-48, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27765656

RESUMO

The purpose of the present study was to investigate the dynamic changes in the main regulatory genes of the mitochondrial permeability transition pore in E. tenella host cells. Primary chick embryo cecum epithelial cell culture techniques, spectrophotometer technology, Hoechst-Annexin V-PI apoptosis staining and ELISA were used to detect the apoptosis rate and dynamic changes of Bcl-2, Bcl-xl, Bax, Bak, Bid, Bad, HK-II, and ATP content in E. tenella host cells at 4, 24, 48, 72, 96, and 120 h. The rates of early apoptosis, late apoptosis, and necrosis of group T0 were significantly lower (P < 0.05) or highly significantly lower (P < 0.01) than those of group C at 4 h, but higher (P < 0.05 or P < 0.01) at varying degrees than those of the same group at 24-120 h. Compared to group C, the amount of Bcl-2, ATP, Bax and Bad in group T0 were visibly lower (P < 0.05 or P < 0.01) at 4 h, whereas Bcl-xl/Bax was highly significantly higher (P < 0.01) at 4 h. In addition, group T0 had less ATP at 24-120 h than group C, whereas the amount of Bcl-2, Bcl-xl, Bax, Bak, Bid, Bad and HK-II in group T0 inversely increased in varying degrees at 24-120 h compared with group C. Moreover, Bcl-2/Bax was lower (P < 0.01) at 24, 48, and 96 h, and Bcl-xl/Bax was lower (P < 0.05) at 48 h in group T0 than in group C, respectively. Taken together, these observations indicate that in the early developmental stages of E. tenella, the host-cell apoptosis rate decreased; although the amount of anti- and pro-apoptotic genes in host cells decreased, the ratios of anti-apoptotic to pro-apoptotic bcl-2 gene-family members increased. In the middle and later developmental stages of E. tenella, the host-cell apoptosis rate increased; the amount of anti- and pro-apoptotic genes increased, while the ratios of anti-apoptotic to pro-apoptotic bcl-2 gene-family members decreased. In addition, ATP decreased at all developmental stages of E. tenella.


Assuntos
Eimeria tenella/genética , Genes de Protozoários/fisiologia , Genes Reguladores/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Protozoários/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Embrião de Galinha , Galinhas , Eimeria tenella/crescimento & desenvolvimento , Eimeria tenella/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
Adv Sci (Weinh) ; 11(31): e2304687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889331

RESUMO

The microenvironment mediated by the microglia (MG) M1/M2 phenotypic switch plays a decisive role in the neuronal fate and cognitive function of Alzheimer's disease (AD). However, the impact of metabolic reprogramming on microglial polarization and its underlying mechanism remains elusive. This study reveals that cordycepin improved cognitive function and memory in APP/PS1 mice, as well as attenuated neuronal damage by triggering MG-M2 polarization and metabolic reprogramming characterized by increased OXPHOS and glycolysis, rather than directly protecting neurons. Simultaneously, cordycepin partially alleviates mitochondrial damage in microglia induced by inhibitors of OXPHOS and glycolysis, further promoting MG-M2 transformation and increasing neuronal survival. Through confirmation of cordycepin distribution in the microglial mitochondria via mitochondrial isolation followed by HPLC-MS/MS techniques, HKII and PDK2 are further identified as potential targets of cordycepin. By investigating the effects of HKII and PDK2 inhibitors, the mechanism through which cordycepin targeted HKII to elevate ECAR levels in the glycolysis pathway while targeting PDK2 to enhance OCR levels in PDH-mediated OXPHOS pathway, thereby inducing MG-M2 polarization, promoting neuronal survival and exerting an anti-AD role is elucidated.


Assuntos
Desoxiadenosinas , Modelos Animais de Doenças , Microglia , Mitocôndrias , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Desoxiadenosinas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Hexoquinase/metabolismo , Hexoquinase/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Glicólise/efeitos dos fármacos , Reprogramação Metabólica
9.
J Ethnopharmacol ; 331: 118281, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701934

RESUMO

Lung cancer causes the most cancer deaths and needs new treatment strategies urgently. Salvia miltiorrhiza is a classical Chinese herb and a strong candidate for tumor treatment. The study found that the aqueous extract of Salvia miltiorrhiza (DSAE), ethanol extract of Salvia miltiorrhiza (DSEE), and its active components danshensu (DSS) and dihydrotanshinone I (DHI), exhibited antineoplastic effects in vivo and in vitro. Meanwhile, DSAE, DSEE, DSS, and DHI reduced glycolysis metabolites (ATP, lactate, and pyruvate contents) production, decreased aerobic glycolysis enzymes, and inhibited Seahorse indexes (OCR and ECAR) in Lewis lung cancer cells (LLC). Data suggests that aerobic glycolysis could be inhibited by Salvia miltiorrhiza and its components. The administration of DSS and DHI further reduced the level of HKII in lung cancer cell lines that had been inhibited with HK-II antagonists (2-deoxyglucose, 2-DG; 3-bromo-pyruvate, 3-BP) or knocked down with siRNA, thereby exerting an anti-lung cancer effect. Although DSS and DHI decreased the level of HKII in HKII-Knock-In lung cancer cell line, their anti-lung cancer efficacy remained limited due to the persistent overexpression of HKII in these cells. Reiterating the main points, we have discovered that the anti-lung cancer effects of Salvia miltiorrhiza may be attributed to its ability to regulate HKII expression levels, thereby inhibiting aerobic glycolysis. This study not only provides a new research paradigm for the treatment of cancer by Salvia miltiorrhiza, but also highlights the important link between glucose metabolism and the effect of Salvia Miltiorrhiza.


Assuntos
Antineoplásicos Fitogênicos , Glicólise , Neoplasias Pulmonares , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Glicólise/efeitos dos fármacos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Camundongos , Masculino , Fenantrenos/farmacologia , Fenantrenos/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Quinonas/farmacologia , Furanos , Lactatos
10.
Toxicol Appl Pharmacol ; 272(2): 356-64, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23777606

RESUMO

Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Catecóis/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fenóis/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Catecóis/química , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Necrose , Fenóis/química , Espécies Reativas de Oxigênio/metabolismo
11.
Orphanet J Rare Dis ; 18(1): 315, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817200

RESUMO

BACKGROUND: Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy due to mutations in the CAPN3 gene. While the pathophysiology of this disease has not been clearly established yet, Wnt and mTOR signaling pathways impairment in LGMDR1 muscles has been reported. RESULTS: A reduction in Akt phosphorylation ratio and upregulated expression of proteins implicated in glycolysis (HK-II) and in fructose and lactate transport (GLUT5 and MCT1) in LGMDR1 muscle was observed. In vitro analysis to establish mitochondrial and glycolytic functions of primary cultures were performed, however, no differences between control and patients were observed. Additionally, gene expression analysis showed a lack of correlation between primary myoblasts/myotubes and LGMDR1 muscle while skin fibroblasts and CD56- cells showed a slightly better correlation with muscle. FRZB gene was upregulated in all the analyzed cell types (except in myoblasts). CONCLUSIONS: Proteins implicated in metabolism are deregulated in LGMDR1 patients' muscle. Obtained results evidence the limited usefulness of primary myoblasts/myotubes for LGMDR1 gene expression and metabolic studies. However, since FRZB is the only gene that showed upregulation in all the analyzed cell types it is suggested its role as a key regulator of the pathophysiology of the LGMDR1 muscle fiber. The Wnt signaling pathway inactivation, secondary to FRZB upregulation, and GLUT5 overexpression may participate in the impaired adipogenesis in LGMD1R patients.


Assuntos
Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Via de Sinalização Wnt , Técnicas de Cultura de Células , Músculo Esquelético/metabolismo
12.
Int J Hematol ; 116(3): 372-380, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35536508

RESUMO

We aimed to assess HKII expression and its prognostic significance in diffuse large B-cell lymphoma (DLBCL) patients. The HKII protein level was determined by immunohistochemistry in 159 newly diagnosed DLBCL patients, and its relationship with overall response rate, progression-free survival (PFS), and overall survival (OS) was analyzed. HKII was expressed in 95 DLBCL patients (59.7%). HKII-positive patients had poorer outcomes than negative patients for 5-y PFS (68% vs. 84%, p = 0.029) and 5-y OS (78% vs. 94%, p = 0.05). When only patients without no bulky disease, B symptoms, or extranodal involvement who had low IPI scores were considered, those with positive HKII had worse 5y-PFS and 5y-OS (p < 0.05). Multivariate analysis indicated that HKII status was an independent prognostic factor of OS. In subgroup analysis, HKII expression was associated with inferior OS in the CHOP group (p = 0.017). In CHOP group patients without bulky disease or extranodal involvement who had low LDH and low IPI scores (p < 0.05), positive HKII was associated with worse PFS and OS. No differences in PFS and OS, or any independent prognostic factors, were found in the RCHOP group. In DLBCL, HKII is valuable as a prognostic biomarker and may be useful as a tool for assessing disease risk.


Assuntos
Hexoquinase , Linfoma Difuso de Grandes Células B , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Hexoquinase/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Prednisona/uso terapêutico , Prognóstico , Estudos Retrospectivos , Rituximab/uso terapêutico , Vincristina/uso terapêutico
13.
Cancer Manag Res ; 13: 449-462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500659

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. METHODS: We analysed the expression of ROCK2 in osteosarcoma tissues by RT-qPCR and Western blot. Cell proliferation were analysed using CCK8, EdU and colony formation assays. The level of cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. RESULTS: Herein, our study showed that ROCK2 expression in OS tissues was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII expression in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. CONCLUSION: Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis and identified a new mechanism of ROCK2 control in OS.

14.
Life Sci ; 267: 118910, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359671

RESUMO

AIMS: Cancer cells exhibit a metabolic change called aerobic glycolysis compared with normal cells. Balanophorin B is a terpenoid ingredient reported from the genus Balanophora. In this research, we studied the effect of balanophorin B on glycolysis of HepG2 cells and Huh-7 cells under hypoxia. MAIN METHODS: The Warburg effect was monitored by assessing glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Key enzymes in the glycolytic pathway and HIF-1α protein expression and degradation were analyzed by real-time PCR and western blotting. The anti-cancer effect of balanophorin B in vivo was also investigated. KEY FINDINGS: Balanophorin B inhibited the proliferation, glucose uptake, and ECAR in both HepG2 cells and Huh-7 cells. In addition, balanophorin B inhibited the protein level of HIF-1α and its downstream targets LDHA and HKII under hypoxia, whereas HIF-1α mRNA level did not change after balanophorin B treatment. The HIF-1α plasmid reversed the inhibition of balanophorin B on glycolysis, and the proteasome inhibitor MG132 attenuated the effect of balanophorin B on HIF-1α protein expression, suggesting that balanophorin B might post-transcriptionally affect HIF-1α. Moreover, balanophorin B increased the expression of VHL and PHD2. HIF-1α siRNA also greatly attenuated the inhibitory effect of balanophorin B on HepG2 cells glucose uptake. Balanophorin B significantly inhibited tumor growth in vivo, without causing obvious toxicity to mice. SIGNIFICANCE: These data suggest that balanophorin B inhibits glycolysis probably via an HIF-1α-dependent pathway, and the ubiquitin-proteasome pathway was greatly involved in the induction of balanophorin B on HIF-1α degradation.


Assuntos
Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Terpenos/farmacologia , Animais , Balanophoraceae/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , Glucose/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Extratos Vegetais/farmacologia , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Genet ; 12: 680928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220956

RESUMO

Prostate cancer (PCA) is the second leading cause of cancer-related mortality in men. The glycolytic enzymes hexokinase II (HKII) and the major regulator hypoxia-inducible factor-1α (HIF-1α) are PCA-specific biomarkers. Some studies have shown that HKII and HIF-1α are highly expressive in PCA and are associated with the growth and metastasis of treatment. Whether HKII and HIF-1α regulate the different differentiation of PCA remains largely unknown. Therefore, the study aims to explore the value of HKII and HIF-1α in different grade groups of PCA. Our data indicated that compared with normal prostate tissues, the level of mRNA and protein of HKII and HIF-1α in PCA increased significantly, besides the results showed the high expression of HKII and HIF-1α had a tendency to promote the progression and differentiation of PCA. The study also found that HKII expression was positively correlated with the expression of HIF-1α. HKII and HIF-1α were related to the degree of differentiation PCA, especially in high-grade PCA. Furthermore, the high expression of HKII was significantly associated with Gleason score and histological differentiation in clinicopathological characteristics of patients with PCA. These results were further used to confirm that the expression of HKII and HIF-1α was associated with the progression and differentiation of PCA. These experiments indicated that HKII and HIF-1α might be novel biomarkers of PCA with potential clinical application value, provide a new potential target for PCA treatment, and are expected to be used for individualized treatment in patients with PCA.

16.
ACS Appl Mater Interfaces ; 13(30): 35281-35293, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309373

RESUMO

Targeted therapies of melanoma are of urgent need considering the resistance of this aggressive type of cancer to chemotherapeutics. The voltage-dependent anion channel 1 (VDAC1)-hexokinase-II (HK-II) complex is an emerging target for novel anticancer therapies based on induced mitochondria-mediated apoptosis. The low cell membrane permeability of the anticancer 12-mer peptide N-Ter (RDVFTKGYGFGL) derived from the N-terminal fragment of the VDAC1 protein impedes the intracellular targeting. Here, novel multiblock VDAC1-derived cationic amphiphilic peptides (referred to as Pal-N-Ter-TAT, pFL-N-Ter-TAT, and Pal-pFL-N-Ter-TAT) are designed with a self-assembly propensity and cell-penetrating properties. The created multiblock amphiphilic peptides of partial α-helical conformations form nanoparticles of ellipsoid-like shapes and are characterized by enhanced cellular uptake. The amphiphilic peptides can target mitochondria and dissociate the VDAC1-HK-II complex at the outer mitochondrial membrane, which result in mitochondria-mediated apoptosis. The latter is associated with decrease of the mitochondrial membrane potential, cytochrome c release, and changes of the expression levels of the apoptotic proteins in A375 melanoma cells. Importantly, the mitochondrial VDAC1-derived amphiphilic peptides have a comparable IC50 value for melanoma cells to a small-molecule drug, sorafenib, which has been previously used in clinical trials for melanoma. These results demonstrate the potential of the designed peptide constructs for efficient melanoma inhibition.


Assuntos
Antineoplásicos/farmacologia , Hexoquinase/metabolismo , Peptídeos/farmacologia , Tensoativos/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos
17.
Free Radic Biol Med ; 146: 119-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669347

RESUMO

Energy metabolism plays important roles in the growth and survival of cancer cells. Here, we find a newly synthesized flavonoid named GL-V9, which inhibits glycolysis and induces apoptosis of human breast cancer cell lines, and investigate the underlying mechanism. Results show that hexokinase II (HKII) plays important roles in the anticancer effects of GL-V9. GL-V9 not only downregulates the expression of HKII in MDA-MB-231 and MCF-7 cells, but also induces dissociation of HKII from voltage-dependent anion channel (VDAC) in mitochondria, resulting in glycolytic inhibition and mitochondrial-mediated apoptosis. The dissociation of mitochondrial HKII is attributed to GSK-3ß-induced phosphorylation of mitochondrial VDAC. Our in vivo experiments also show that GL-V9 significantly inhibits the growth of human breast cancer due to activation of GSK-3ß and inactivation of AKT. Thus, GL-V9 induces cytotoxicity in breast cancer cells via disrupting the mitochondrial binding of HKII. Our works demonstrate the significance of metabolic regulators in cancer growth and offer a fresh insight into the molecular basis for the development of GL-V9 as a candidate for breast carcinoma treatment.


Assuntos
Neoplasias da Mama , Hexoquinase , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Flavonoides/metabolismo , Flavonoides/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Mitocôndrias/metabolismo
18.
Onco Targets Ther ; 12: 4975-4984, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388304

RESUMO

Background: Tripartite motif-containing protein 11 (TRIM11) is one of the E3 ubiquitin ligases, which is upregulated in several human tumors. Meanwhile, the detailed function of TRIM11 remains unclear in breast cancer cells. Purpose: The purpose of the present study is to analyze the biological function of TRIM11 and identify its potential signaling pathway in breast cancer cells. Patients and methods: Thirty five pairs of breast cancer specimens and adjacent-matched noncancerous samples were used to analyse the expression profile of TRIM11. RNA interference was utilized to silence TRIM11 in three breast cancer cell lines (T47D, ZR7530, and BT474) respectively. Meanwhile, overexpression of TRIM11 was induced in one breast cancer cells (MDA-MB-231) by using Lentiviral vector. Moreover, the AKT inhibitor (MK-2206) was used to determine the correlation between TRIM11 and AKT in breast cancer cells. Results: Our results indicated that TRIM11 was increased in breast cancer tissues. Moreover, TRIM11 was a pro-proliferation regulator in breast cancer cells and participated in the metabolism of glycolysis. Importantly, our results demonstrated that TRIM11 was involved in the AKT/GLUT1 signaling pathway in breast cancer cells. Conclusion: Present research not only gained a deep understanding of the biological function of TRIM11 but also provided evidences to indicate its possible signaling pathway in breast cancer cells.

19.
Genes (Basel) ; 10(3)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818878

RESUMO

Recent studies show an association of microRNA (miRNA) polymorphisms (miRSNPs) in different cancer types, including non-Hodgkin lymphoma (NHL). The identification of miRSNPs that are associated with NHL susceptibility may provide biomarkers for early diagnosis and prognosis for patients who may not respond well to current treatment options, including the immunochemotherapy drug combination that includes rituximab, cyclophosphamide, doxorubicin, vincristine and prednisome (R-CHOP). We developed a panel of miRSNPs for genotyping while using multiplex PCR and chip-based mass spectrometry analysis in an Australian NHL case-control population (300 cases, 140 controls). Statistical association with NHL susceptibility was performed while using Chi-square (χ²) and logistic regression analysis. We identified three SNPs in MIR143 that are to be significantly associated with reduced risk of NHL: rs3733846 (odds ratio (OR) [95% confidence interval (CI)] = 0.54 [0.33 ⁻ 0.86], p = 0.010), rs41291957 (OR [95% CI] = 0.61 [0.39 ⁻ 0.94], p = 0.024), and rs17723799 (OR [95% CI] = 0.43 [0.26 ⁻ 0.71], p = 0.0009). One SNP, rs17723799, remained significant after correction for multiple testing (p = 0.015). Subsequently, we investigated an association between the rs17723799 genotype and phenotype by measuring target gene Hexokinase 2 (HKII) expression in cancer cell lines and controls. Our study is the first to report a correlation between miRSNPs in MIR143 and a reduced risk of NHL in Caucasians, and it is supported by significant SNPs in high linkage disequilibrium (LD) in a large European NHL genome wide association study (GWAS) meta-analysis.


Assuntos
Linfoma não Hodgkin/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , Idoso , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hexoquinase/genética , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade
20.
Oncol Lett ; 15(4): 5553-5560, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552193

RESUMO

Although hexokinase (HK) 2, pyruvate kinase muscle (PKM) isozyme 2 and lactate dehydrogenase (LDH) A predict the efficacy of medicines in various solid tumors, their ability to predict the efficacy of cetuximab in metastatic colorectal cancer (mCRC) remains unclear. mCRC patients with pathological specimens who received cetuximab and chemotherapy from 2005 to 2015 in the present institution were enrolled. Immunohistochemistry was used to detect HK2, PKM2 and LDHA expression. SPSS20 was used for statistical analysis. A total of 68 patients were included; 33 received cetuximab plus chemotherapy as first-line therapy, and the rest, as second- or later-line therapy. HK2 expression levels were increased in cancer compared with normal tissue (75.4% vs. 40%; P<0.001), however PKM2 (P=0.243) and LDHA (P=0.067) expression levels were not. For progression-free survival (PFS) with first-line cetuximab plus chemotherapy, patients with high HK2 expression exhibited longer PFS compared with those with low HK2 expression (23.9 months vs. 6.9 months; P=0.021). However, this positive association was absent in 35 cases administered first-line chemotherapy alone (13.4 months vs. 13.5 months; P=0.539). LDHA expression was associated with the PFS of patients receiving first-line chemotherapy (18.3 and 10.1 months for high and low expression, respectively; P=0.005), whereas this association was absent in cetuximab plus chemotherapy cases (19.9 months vs. 12 months; P=0.522). Furthermore, high LDHA expression correlated with high overall response rate (ORR) (72.2% vs. 15.4%, P=0.006) for chemotherapy, however not disease control rate (DCR) (P=0.074). Neither DCR nor ORR were associated with HK2 expression. PKM2 expression did not affect PFS, DCR or ORR. LDHA expression (P=0.005), pathological differentiation (P=0.019) and synchronous/metachronous metastasis (P=0.014) were independent predictive factors of PFS for all first-line patients, and tumor differentiation (P=0.002) was associated with overall survival (OS) in multivariate analysis. HK2, PKM2 and LDHA did not impact OS. It was concluded that HK2 expression was increased in colorectal cancer tissue and may predict cetuximab efficacy and LDHA for chemotherapy treatment of mCRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA