RESUMO
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
RESUMO
Citrus tolerance to huanglongbing could result from tolerance to the pathogen Candidatus Liberibacter asiaticus (CLas) and/or to its vector Diaphorina citri. Field observations and greenhouse-controlled studies showed that some citrus cultivars were more tolerant than others. However, the mechanism(s) behind the tolerance has not been determined yet. Using GC-MS, we investigated the volatile organic compounds (VOCs) and the non-volatile metabolite profiles of two tolerant citrus cultivars- Australian finger lime, 'LB8-9' Sugar Belle® mandarin hybrid, and a recently released mandarin hybrid 'Bingo'. The three were grafted onto the rootstock, Carrizo citrange. Our findings showed that the metabolomic profiles of Australian finger lime were different from that of 'LB8-9'. Finger lime was high in many amino acids and tricarboxylic acid intermediates, whereas 'LB8-9' was high in several amino acids, sugars, and sugar alcohols. 'LB8-9' was high in thymol, which is known for its strong antimicrobial activity against a panel of pathogenic bacteria. The metabolomic profiles of 'Bingo' were intensely different from the other mandarin hybrid, 'LB8-9', including a reduced thymol biosynthetic pathway and low amounts of most of the amino acids and sugar alcohols. Remarkably, 1,8-cineole (eucalyptol) was only detected in 'Bingo', indicating that eucalyptol could have feeding and ovipositional repellency against D. citri. The metabolite profiles generated for HLB-tolerant citrus species will improve the ability of citrus breeders and will allow them to take more informed decisions. Metabolomic profiling of HLB-tolerant citrus species could identify tolerance specific markers that can be introduced to other commercial citrus cultivars to improve their tolerance to HLB disease.