Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Cell Mol Med ; 28(7): e18191, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494860

RESUMO

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Assuntos
Histonas , Fibrose Pulmonar Idiopática , Humanos , Histonas/metabolismo , Acetilglucosamina/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
2.
J Cell Physiol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465708

RESUMO

Maternal obesity (MO) is a significant cause of increased cardiometabolic risk in offspring, who present endothelial dysfunction at birth. Alterations in physiologic and cellular redox status are strongly associated with altered gene regulation in arterial endothelium. However, specific mechanisms by which the pro-oxidant fetal environment in MO could modulate the vascular gene expression and function during the offspring's postnatal life are elusive. We tested if oxidative stress could reprogram the antioxidant-coding gene's response to a pro-oxidant challenge through an epigenetic transcriptional memory (ETM) mechanism. A pro-oxidant double-hit protocol was applied to human umbilical artery endothelial cells (HUAECs) and EA.hy 926 endothelial cell lines. The ETM acquisition in the HMOX1 gene was analyzed by RT-qPCR. HMOX1 mRNA decay was evaluated by Actinomycin-D treatment and RT-qPCR. To assess the chromatin accessibility and the enrichment of NRF2, RNAP2, and phosphorylation at serin-5 of RNAP2, at HMOX1 gene regulatory regions, were used DNase HS-qPCR and ChIP-qPCR assays, respectively. The CpG methylation pattern at the HMOX1 core promoter was analyzed by DNA bisulfite conversion and Sanger sequencing. Data were analyzed using two-way ANOVA, and p < 0.05 was statistically significant. Using a pro-oxidant double-hit protocol, we found that the Heme Oxygenase gene (HMOX1) presents an ETM response associated with changes in the chromatin structure at the promoter and gene regulatory regions. The ETM response was characterized by a paused-RNA Polymerase 2 and NRF2 enrichment at the transcription start site and Enhancer 2 of the HMOX1 gene, respectively. Changes in DNA methylation pattern at the HMOX1 promoter were not a hallmark of this oxidative stress-induced ETM. These data suggest that a pro-oxidant milieu could trigger an ETM at the vascular level, indicating a potential epigenetic mechanism involved in the increased cardiovascular risk in the offspring of women with obesity.

3.
Apoptosis ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095556

RESUMO

SEH1 like nucleoporin (SEH1L) is an important component of nuclear pore complex (NPC), which is crucial in the regulation of cell division. However, the interrelation between SEH1L expression and tumor progression is less studied. In this research, we performed a systematic bioinformatic analysis about SEH1L using TCGA, Timer 2.0, Cbioportal, UCLAN and CellMiner™ databases in pan-cancer. Besides, we further validated the bioinformatic results through in vitro and in vivo experiments in HCC, including transcriptome sequencing, real-time quantitative PCR (RT-qPCR), western blotting (WB), immunohistochemistry (IHC), cell proliferation assays, clone formation, EdU, transwell, flow cytometry and subcutaneous tumor model. Our results suggested that SEH1L was significantly up-regulated and related to poor prognosis in most cancers, and may serve as a potential biomarker. SEH1L could promote HCC progression in vitro and in vivo. Besides, the next generation sequencing suggested that 684 genes was significantly up-regulated and 678 genes was down-regulated after the knock down of SEH1L. SEH1L siliencing could activate ATF3/HMOX1/GPX4 axis, decrease mitochondrial membrane potential and GSH, but increase ROS and MDA, and these effects could be reversed by the knock down of ATF3. This study indicated that SEH1L siliencing could induce ferroptosis and suppresses hepatocellular carcinoma (HCC) progression via ATF3/HMOX1/GPX4 axis.

4.
Br J Haematol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934404

RESUMO

Glomerular hyperfiltration and albuminuria are frequent kidney abnormalities in children with sickle cell anaemia (SCA). However, little is known about their persistence in African SCA children. This prospective study included 600 steady-state SCA children aged 2-18 years from the Democratic Republic of Congo. Participants were genotyped for apolipoprotein L1 (APOL1) risk variants (RVs) and haem oxygenase-1 (HMOX1) GT-dinucleotide repeats. Kidney abnormalities were defined as albuminuria, hyperfiltration or decreased estimated creatinine-based glomerular filtration rate (eGFRcr). At baseline, 247/600 (41.2%) participants presented with kidney abnormalities: 82/592 (13.8%) with albuminuria, 184/587 (31.3%) with hyperfiltration and 15/587 (2.6%) with decreased eGFRcr. After a median follow-up of 5 months, repeated testing was performed in 180/247 (72.9%) available participants. Persistent hyperfiltration and persistent albuminuria (PA) were present in 29.2% (38/130) and 39.7% (23/58) respectively. eGFR normalized in all participants with a baseline decreased eGFRcr. Haemoglobinuria (p = 0.017) and male gender (p = 0.047) were significantly associated with PA and persistent hyperfiltration respectively. APOL1 RVs (G1G1/G2G2/G1G2) were borderline associated with PA (p = 0.075), while HMOX1 long repeat was not associated with any persistent kidney abnormality. This study reveals that a single screening can overestimate the rate of kidney abnormalities in children with SCA and could lead to overtreatment.

5.
Biochem Biophys Res Commun ; 690: 149271, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006802

RESUMO

Many scholars have suggested that exosomes (Exos) can carry active molecules to induce angiogenesis and thus accelerate diabetic wound healing. Heme oxygenase-1 (HO-1) encoded by the gene HMOX1 promotes wound healing in DM by enhancing angiogenesis. Nevertheless, whether HMOX1 regulates wound healing in DM through mesenchymal stem cell-derived exosomes (MSC-Exos) remains to be further explored. The primary isolated- and cultured-cells expressed MSC-specific marker proteins, and had low immunogenicity and multi-differentiation potential, which means that MSCs were successfully isolated in this study. Notably, HO-1 protein expression was significantly higher in Exo-HMOX1 than in Exos, indicating that HMOX1 could be delivered to Exos as an MSCs-secreted protein. After verifying the -Exo structure, fibroblasts, keratinocytes, and human umbilical vein endothelial cells (HUVECs) were incubated with Exo-HMOX1 or Exo, and the findings displayed that Exo-HMOX1 introduction promoted the proliferation and migration of fibroblasts, keratinocytes and the angiogenic ability of HUVECs in vitro study. After establishing diabetic wound model mice, PBS, Exo, and Exo-HMOX1 were subcutaneously injected into multiple sites on the 1st, 3rd, 7th, and 14th day, DM injected with Exo-HMOX1 showed faster wound healing, re-epithelialization, collagen deposition, and angiogenesis than those in PBS and Exo groups in vitro study. In summary, Exo-HMOX1 could enhance the activity of fibroblasts, keratinocytes, and HUVEC, and accelerate wound healing by promoting angiogenesis in DM.


Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Exossomos/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Angiogênese , Cicatrização , Células Endoteliais da Veia Umbilical Humana , Diabetes Mellitus/metabolismo , Fibroblastos/metabolismo
6.
Mol Cell Biochem ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503948

RESUMO

NEK2 is a serine/threonine protein kinase that is involved in regulating the progression of various tumors. Our previous studies have found that NEK2 is highly expressed in gastric cancer and suggests that patients have a worse prognosis. However, its role and mechanism in gastric cancer are only poorly studied. In this study, we established a model of ferroptosis induced by RSL3 or Erastin in AGS cells in vitro, and konckdown NEK2, HOMX1, Nrf2 by siRNA. The assay kit was used to analyzed cell viability, MDA levels, GSH and GSSG content, and FeRhoNox™-1 fluorescent probe, BODIPY™ 581/591 C11 lipid oxidation probe, CM-H2DCFDA fluorescent probe were used to detected intracellular Fe2+, lipid peroxidation, and ROS levels, respectively. Calcein-AM/PI staining was used to detect the ratio of live and dead cells, qRT-PCR and Western blot were used to identify the mRNA and protein levels of genes in cells, immunofluorescence staining was used to analyze the localization of Nrf2 in cells, RNA-seq was used to analyze changes in mRNA expression profile, and combined with the FerrDb database, ferroptosis-related molecules were screened to elucidate the impact of NEK2 on the sensitivity of gastric cancer cells to ferroptosis. We found that inhibition of NEK2 could enhance the sensitivity of gastric cancer cells to RSL3 and Erastin-induced ferroptosis, which was reflected in the combination of inhibition of NEK2 and ferroptosis induction compared with ferroptosis induction alone: cell viability and GSH level were further decreased, while the proportion of dead cells, Fe2+ level, ROS level, lipid oxidation level, MDA level, GSSG level and GSSG/GSH ratio were further increased. Mechanism studies have found that inhibiting NEK2 could promote the expression of HMOX1, a gene related to ferroptosis, and enhance the sensitivity of gastric cancer cells to ferroptosis by increasing HMOX1. Further mechanism studies have found that inhibiting NEK2 could promote the ubiquitination and proteasome degradation of Keap1, increase the level of Nrf2 in the nucleus, and thus promote the expression of HMOX1. This study confirmed that NEK2 can regulate HMOX1 expression through Keap1/Nrf2 signal, and then affect the sensitivity of gastric cancer cells to ferroptosis, enriching the role and mechanism of NEK2 in gastric cancer.

7.
BMC Cardiovasc Disord ; 24(1): 19, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172743

RESUMO

BACKGROUND: The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS: An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS: Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION: LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.


Assuntos
MicroRNAs , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Humanos , Apoptose , Heme Oxigenase-1/metabolismo , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
BMC Womens Health ; 24(1): 476, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210460

RESUMO

BACKGROUND: This study investigates the intricate role of Heme Oxygenase 1 (HMOX1) in ovarian cancer, emphasizing its prognostic significance, influence on immune cell infiltration, and impact on the malignant characteristics of primary ovarian cancer cells. MATERIALS AND METHODS: Our research began with an analysis of HMOX1 expression and its prognostic implications using data from The Cancer Genome Atlas (TCGA) dataset, supported by immunohistochemical staining. Further analyses encompassed co-expression studies, Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. We utilized the TIMER and TISIDB platforms to evaluate the immunotherapeutic potential of HMOX1. Additionally, in vitro studies that involved modulating HMOX1 levels in primary ovarian cancer cells were conducted to confirm its biological functions. RESULTS: Our findings indicate a significant overexpression of HMOX1 in ovarian cancer, which correlates with increased tumor malignancy and poorer prognosis. HMOX1 was shown to significantly modulate the infiltration of immune cells, particularly neutrophils and macrophages. Single-cell RNA sequencing (scRNA-seq) analysis revealed that HMOX1 is predominantly expressed in tumor-associated macrophages (TAMs), with a positive correlation to chemokines and their receptors. An increase in HMOX1 levels was associated with heightened levels of immunoinhibitors, immunostimulators, and MHC molecules. Functional assays demonstrated that HMOX1 knockdown promotes apoptosis, attenuating cell proliferation and invasion, while its overexpression yields opposing effects. CONCLUSION: HMOX1 emerges as a critical therapeutic target, intricately involved in immunomodulation, prognosis, and the malignant behavior of ovarian cancer. This highlights HMOX1 as a potential biomarker and therapeutic target in the fight against ovarian cancer.


Assuntos
Heme Oxigenase-1 , Neoplasias Ovarianas , Feminino , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Prognóstico , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Biomarcadores Tumorais/metabolismo
9.
Biochem Genet ; 62(2): 1248-1262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37573262

RESUMO

Mesenchymal stem cells (MSCs) are involved in the pathogenesis of pre-eclampsia (PE). Heme oxygenase (HMOX) protects against placental cytotoxic injuries associated with PE. Here, we aimed to clarify the roles of HMOX1 in MSC proliferation and apoptosis, trophoblast cell migration, and regulation of angiogenesis, and assess its involvement in the pathogenesis of PE. HMOX1 and vascular endothelial growth factor (VEGF) expression levels in decidual tissues and decidua-derived MSCs (dMSCs) of healthy pregnant women and patients with PE were evaluated via quantitative reverse transcription-polymerase chain reaction and western blotting. Moreover, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and transwell assays were used to analyze the cell viability, apoptosis, and migration, respectively. The tube formation ability of human umbilical vein endothelial cells (HUVECs) was also evaluated. Compared to the healthy pregnant women, HMOX1 expression was upregulated in the decidual tissue and downregulated in the dMSCs of patients with PE. HMOX1 overexpression significantly increased dMSC proliferation, decreased cell apoptosis, and increased VEGF expression. Moreover, HMOX1-plasmid transfected dMSC culture supernatant promoted the migration of HTR-8/SVneo cells and improved angiogenesis by HUVECs. The opposite effects were observed in HMOX1-small interfering RNA-treated dMSCs cells. However, VEGF-siRNA reversed the effects of HMOX1-plasmid. HMOX1 is involved in the pathogenesis of PE by regulating the proliferation, apoptosis, and angiogenesis modulation potential of MSCs via VEGF, acting as a potential therapeutic target for PE.

10.
Environ Toxicol ; 39(4): 2166-2181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115220

RESUMO

Ferroptosis is expected to be a therapeutic target for cancers including pancreatic cancer. We aimed to screen genes that regulate ferroptosis and doxycycline resistance in pancreatic cancer and to explore the underlying mechanisms. Bioinformatics analysis was performed to identify genes that respond to ferroptosis in two human pancreatic cancer cells with GOT1 knocked down or not. 325 and 842 genes were upregulated in MiaPaCa and Tu8902 cells in response to GOT1 knockdown, with 43 genes shared. Among the 43 genes, 14 genes were identified to interact with ferroptosis key genes. MB and HMOX1 were the genes most sensitive to Erastin and doxycycline. Moreover, MB and HMOX1 expression was higher in human normal pancreatic duct epithelial cells than in pancreatic cancer cells. MB and HMOX1 proteins physically bound and promoted each other's expression. By interacting with HMOX1, MB suppressed pancreatic cancer cell proliferation, colony formation and invasion, and promoted cell ferroptosis and sensitivity to erastin and doxycycline. Silencing HMOX1 reversed the promoting effect of MB on cell ferroptosis and sensitivity to doxycycline. A pancreatic cancer xenograft model was established by subcutaneous injection of Panc-1 cells transfected with or without Ad-MB, and doxycycline was administered intraperitoneally. Overexpression of MB enhanced the inhibitory effect of doxycycline on xenograft growth. In conclusion, MB facilitated doxycycline sensitivity in pancreatic cancer cells through promoting HMOX1-mediated ferroptosis.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Heme Oxigenase-1/genética , Mioglobina , Doxiciclina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
11.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473826

RESUMO

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Assuntos
Micotoxinas , Zearalenona , Humanos , Feminino , Animais , Ovinos , Zearalenona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo , Antioxidantes/farmacologia , Micotoxinas/metabolismo , Apoptose
12.
Int Wound J ; 21(3): e14815, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468410

RESUMO

Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mellitus and a leading cause of disability and death in diabetic patients. However, current treatments remain unsatisfactory. Although macrophages are associated with DFU, their exact role in this disease remains uncertain. This study sought to detect macrophage-related genes in DFU and identify possible therapeutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets (GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU were retrieved from the gene expression omnibus (GEO) database for this study. Analysis of the provided single-cell data revealed the distribution of macrophage subpopulations in the DFU. Four independent RNA-seq datasets were merged into a single DFU cohort and further analysed using bioinformatics. This included differential expression (DEG) analysis, multiple machine learning algorithms to identify biomarkers and enrichment analysis. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western bolt. Finally, the findings were validated using RT-qPCR and western blot. We obtained 802 macrophage-related genes in single-cell analysis. Differential expression analysis yielded 743 DEGs. Thirty-seven macrophage-associated DEGs were identified by cross-analysis of marker genes with macrophage-associated DEGs. Thirty-seven intersections were screened and cross-analysed using four machine learning algorithms. Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1 was significantly associated with biological pathways such as the insulin signalling pathway. The results showed that HMOX1 was significantly overexpressed in DFU samples. In conclusion, the analytical results of this study identified HMOX1 as a potentially valuable biomarker associated with macrophages in DFU. The results of our analysis improve our understanding of the mechanism of macrophage action in this disease and may be useful in developing targeted therapies for DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Pé Diabético/terapia , Macrófagos/metabolismo , Biomarcadores , Análise de Célula Única , Heme Oxigenase-1/genética
13.
Am J Epidemiol ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414746

RESUMO

HO-1 is a key enzyme in the management of heme in humans. A GT(n) repeat length in the gene HMOX1, has previously been widely associated with a variety of phenotypes, including susceptibility and outcomes in diabetes, cancer, infections, and neonatal jaundice. However, studies are generally small and results inconsistent. In this study, we imputed the GT(n) repeat length in two European cohorts (UK Biobank, UK, n = 463,005, recruited 2006-onwards; and Avon Longitudinal Study of Parents and Children, ALSPAC, UK, n = 937, recruited 1990 onwards), with the reliability of imputation tested in other cohorts (1000 Genomes, Human Genome Diversity Project and UK-Personal Genome Project). Subsequently, we measured the relationship between repeat length and previously identified associations (diabetes, COPD, pneumonia and infection related mortality in UK Biobank; neonatal jaundice in ALSPAC) and performed a phenome-wide association study (PheWAS) in UK Biobank. Despite high quality imputation (correlation between true repeat length and imputed repeat length >0.9 in test cohorts), clinical associations were not identified in either the PheWAS or specific association studies. These findings are robust to definitions of repeat length and sensitivity analyses. Despite multiple smaller studies identifying associations across a variety of clinical settings; we could not replicate or identify any relevant phenotypic associations with the HMOX1 GT(n) repeat.

14.
Mol Med ; 29(1): 91, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415103

RESUMO

BACKGROUND: E1A-associated 300-kDa protein (P300), an endogenous histone acetyltransferase, contributes to modifications of the chromatin landscape of genes involved in multiple cardiovascular diseases. Ferroptosis of vascular smooth muscle cells (VSMCs) is a novel pathological mechanism of aortic dissection. However, whether P300 regulates VSMC ferroptosis remains unknown. METHODS: Cystine deprivation (CD) and imidazole ketone erastin (IKE) were used to induce VSMC ferroptosis. Two different knockdown plasmids targeting P300 and A-485 (a specific inhibitor of P300) were used to investigate the function of P300 in the ferroptosis of human aortic smooth muscle cells (HASMCs). Cell counting kit-8, lactate dehydrogenase and flow cytometry with propidium iodide staining were performed to assess the cell viability and death under the treatment of CD and IKE. BODIPY-C11 assay, immunofluorescence staining of 4-hydroxynonenal and malondialdehyde assay were conducted to detect the level of lipid peroxidation. Furthermore, co-immunoprecipitation was utilized to explore the interaction between P300 and HIF-1α, HIF-1α and P53. RESULTS: Compared with normal control, the protein level of P300 was significantly decreased in HASMCs treated with CD and IKE, which was largely nullified by the ferroptosis inhibitor ferrostatin-1 but not by the autophagy inhibitor or apoptosis inhibitor. Knockdown of P300 by short-hairpin RNA or inhibition of P300 activity by A-485 promoted CD- and IKE-induced HASMC ferroptosis, as evidenced by a reduction in cell viability and aggravation of lipid peroxidation of HASMCs. Furthermore, we found that hypoxia-inducible factor-1α (HIF-1α)/heme oxygenase 1 (HMOX1) pathway was responsible for the impacts of P300 on ferroptosis of HASMCs. The results of co-immunoprecipitation demonstrated that P300 and P53 competitively bound HIF-1α to regulate the expression of HMOX1. Under normal conditions, P300 interacted with HIF-1α to inhibit HMOX1 expression, while reduced expression of P300 induced by ferroptosis inducers would favor HIF-1α binding to P53 to trigger HMOX1 overexpression. Furthermore, the aggravated effects of P300 knockdown on HASMC ferroptosis were largely nullified by HIF-1α knockdown or the HIF-1α inhibitor BAY87-2243. CONCLUSION: Thus, our results revealed that P300 deficiency or inactivation facilitated CD- and IKE-induced VSMC ferroptosis by activating the HIF-1α/HMOX1 axis, which may contribute to the development of diseases related to VSMC ferroptosis.


Assuntos
Ferroptose , Músculo Liso Vascular , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Gene Med ; 25(6): e3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813742

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a primary health problem worldwide that involves oxidative stress, ferroptosis, and lipid metabolism. However, the underlying mechanism remains unclear. We investigated whether the transcription factor BTB and CNC homology 1 (BACH1) affected IDD progression by regulating HMOX1/GPX4-mediated ferroptosis and lipid metabolism in nucleus pulposus cells (NPCs). METHODS: A rat IDD model was created to detect BACH1 expression in intervertebral disc tissues. Next, rat NPCs were isolated and treated with tert-butyl hydroperoxide (TBHP). BACH1, HMOX1, and GPX4 were knocked down, and oxidative stress and ferroptosis-related marker levels were examined. The binding of BACH1 to HMOX1 and of BACH1 to GPX4 was verified using chromatin immunoprecipitation (ChIP). Finally, untargeted lipid metabolism analysis was performed. RESULTS: An IDD model was successfully created, and BACH1 activity was found to be enhanced in the rat IDD tissues. BACH1 inhibited TBHP-induced oxidative stress and oxidative stress-induced ferroptosis in NPCs. Simultaneously, ChIP verified that BACH1 protein bound to HMOX1 and targeted the HMOX1 transcription inhibition to affect oxidative stress in NPCs. ChIP also verified that BACH1 bound to GPX4 and targeted the GPX4 inhibition to affect ferroptosis in NPCs. Finally, BACH1 inhibition in vivo improved IDD and affected lipid metabolism. CONCLUSIONS: The transcription factor BACH1 promoted IDD by regulating HMOX1/GPX4 to mediate oxidative stress, ferroptosis, and lipid metabolism in NPCs.


Assuntos
Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Degeneração do Disco Intervertebral/genética , Ferroptose/genética , Metabolismo dos Lipídeos/genética , Estresse Oxidativo , Fatores de Transcrição
16.
J Endovasc Ther ; : 15266028231202727, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789605

RESUMO

OBJECTIVE: This study aimed to explore the therapeutic effect of resveratrol (RES) against abdominal aortic aneurysm (AAA) and the role of HMOX1 underlying this effect. METHODS: Vascular smooth muscle cells (VSMCs) were induced by angiotensin II (Ang II) to construct the microenvironment of AAA. HMOX1 expression was downregulated by the short hairpin ribonucleic acid (RNA) specific to HMOX1 in RES-pretreated VSMCs. The levels of matrix metalloproteinase (MMP)-2, MMP-9, and elastin were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. Apoptosis rate was detected. The levels of apoptosis-related proteins (caspase-3 and Bax/Bcl-2), inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1ß), and autophagy-related proteins (Beclin 1, light chain 3 [LC3] II/I, and p62) were detected by western blot. The secretion of inflammatory factors in cell supernatant was detected by enzyme-linked immunosorbent assay (ELISA). The number of autophagic vesicles in VSMCs was observed and analyzed by transmission electron microscopy. A rat model of pancreatic elastase-induced AAA was established to verify the effect and action mechanism of RES. RESULTS: Stimulation of Ang II increased the messenger RNA (mRNA) and protein levels of MMP-2 and MMP-9, decreased elastin expression, and enhanced apoptosis, secretion of inflammatory factors, and autophagy in VSMCs, whereas RES pretreatment ameliorated Ang II-induced VSMC dysfunction. In addition, HMOX1 mRNA and heme oxygenase-1 (HO-1) protein levels were significantly increased in VSMCs pretreated with RES compared with Ang II treatment alone. Silencing of HMOX1 abolished the effects of RES on VSMC dysfunction. Consistently, RES suppressed the development of AAA in rats by increasing the expression of HMOX1. CONCLUSION: Resveratrol protects against AAA by inhibiting extracellular matrix degradation, apoptosis, autophagy, and inflammation of VSMCs via HMOX1 upregulation. CLINICAL IMPACT: Our study found that angiotensin II (Ang II) stimulated increased the levels of MMP-2 and MMP-9 in vascular smooth muscle cells (VSMCs), decreased elastin expression, and promoted apoptosis, autophagy occurrence, and secretion of inflammatory factors, while resveratrol (RES) pretreatment improved this effect. In addition, downregulation of HMOX1 expression eliminated the effect of RES on the function of VSMCs. Our study elucidates that RES improves AAA progression through HMOX1 at both cellular and animal levels. This work can help doctors better understand the pathological mechanism of the occurrence and development of AAA, and provide a theoretical basis for clinicians to find better treatment options.

17.
J Biochem Mol Toxicol ; 37(1): e23228, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193742

RESUMO

Acute compartment syndrome (ACS) is a life-threatening orthopedic emergency, which can even result in amputation. Ferroptosis is an iron-dependent form of nonapoptotic cell death. This study investigated the mechanism of ferroptosis in ACS, explored candidate markers, and determined effective treatments. This study identified pathways involved in the development of ACS through gene set enrichment analysis (GSEA), Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA of heme oxygenase 1 (Hmox1). Bioinformatics methods, combined with real-time quantitative polymerase chain reaction, western blot analysis, and iron staining, were applied to determine whether ferroptosis was involved in the progression of ACS and to explore the mechanism of nuclear factor erythroid-2-related factor 2 (Nfe2l2)/Hmox1 in ferroptosis regulation. Optimal drugs for the treatment of ACS were also investigated using Connectivity Map. The ferroptosis pathway was enriched in GSEA, KEGG of DEGs, and GSEA of Hmox1. After ACS, the reactive oxygen species content, tissue iron content, and oxidative stress level increased, whereas glutathione peroxidase 4 protein expression decreased. The skeletal muscle was swollen and necrotized; the number of mitochondrial cristae became fewer or even disappeared, and Nfe2l2/Hmox1 expression increased at the transcriptional and protein levels. Hmox1 was highly expressed in ACS, indicating that Hmox1 is a possible marker for ACS. we could predict 12 potential target drugs for the treatment of ACS. In conclusion, Hmox1 was a potential candidate marker for ACS diagnosis. Ferroptosis was involved in the progression of ACS. It was speculated that ferroptosis is inhibited by the Nfe2l2/Hmox1 signaling pathway.


Assuntos
Síndromes Compartimentais , Ferroptose , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Ferro , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
18.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685961

RESUMO

The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Proteína Semelhante a ELAV 1/genética , Gencitabina , Pâncreas , Hormônios Pancreáticos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Receptores de Hidrocarboneto Arílico/genética , RNA Mensageiro/genética , Desoxicitidina Quinase/efeitos dos fármacos , Desoxicitidina Quinase/metabolismo , Neoplasias Pancreáticas
19.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445792

RESUMO

Bilirubin has potent biological beneficial effects, protecting against atherosclerosis, obesity, and metabolic syndrome. The aim of this study was to assess serum bilirubin concentrations and (TA)n and (GT)n microsatellite variations in the promoter regions of the UGT1A1 and HMOX1 genes, respectively, in patients with type 2 diabetes mellitus (T2DM). The study was carried out in 220 patients with T2DM and 231 healthy control subjects, in whom standard biochemical tests were performed. The (TA)n and (GT)n dinucleotide variations were determined by means of fragment (size-based) analysis using an automated capillary DNA sequencer. Compared to controls, both male and female patients with T2DM had lower serum bilirubin concentrations (9.9 vs. 12.9 µmol/L, and 9.0 vs. 10.6 µmol/L, in men and women, respectively, p < 0.001). Phenotypic Gilbert syndrome was much less prevalent in T2DM patients, as was the frequency of the (TA)7/7UGT1A1 genotype in male T2DM patients. (GT)nHMOX1 genetic variations did not differ between diabetic patients and controls. Our results demonstrate that the manifestation of T2DM is associated with lower serum bilirubin concentrations. Consumption of bilirubin due to increased oxidative stress associated with T2DM seems to be the main explanation, although (TA)n repeat variations in UGT1A1 partially contribute to this phenomenon.


Assuntos
Diabetes Mellitus Tipo 2 , Polimorfismo Genético , Humanos , Masculino , Feminino , Diabetes Mellitus Tipo 2/genética , República Tcheca/epidemiologia , Genótipo , Bilirrubina/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Regiões Promotoras Genéticas , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
20.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958903

RESUMO

The tumor microenvironment plays a critical role in tumor progression and immune regulation. As one of the most important components of the tumor microenvironment, macrophages have become a new therapeutic target for inhibiting tumor progression. Despite the well-documented anticancer activity of cucurbitacin I, its effect on macrophages remains unclear. In this study, we established a coculture system of macrophages and cancer cells under hypoxic conditions to simulate the tumor-promoting environment mediated by M2-like macrophages. We determined whether cucurbitacin I modulates M2-like polarization in macrophages in vitro and conducted RNA sequencing to identify gene expression changes induced by cucurbitacin I in macrophages. The results indicated a remarkable inhibition of the M2-like polarization phenotype in macrophages following treatment with cucurbitacin I, which was accompanied by the significant downregulation of heme oxygenase-1. Moreover, we found that cucurbitacin I-treated macrophages reduced the migration of cancer cells by inhibiting the M2 polarization in vitro. These findings highlight the potential of cucurbitacin I as a therapeutic agent that targets M2-like macrophages to inhibit cancer cell metastasis. Our study provides novel insights into the intricate interplay among macrophage polarization, cucurbitacin I, and heme oxygenase-1, thereby opening new avenues for cancer treatment.


Assuntos
Neoplasias , Transdução de Sinais , Macrófagos Associados a Tumor , Heme Oxigenase-1 , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA