Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425489

RESUMO

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias , Galinhas/fisiologia , Evolução Molecular , Proteínas de Peixes , Proteínas de Homeodomínio , Rede Nervosa/fisiologia , Rajidae/fisiologia , Fatores de Transcrição , Caminhada/fisiologia , Peixe-Zebra/fisiologia , Nadadeiras de Animais/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Embrião de Galinha , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/fisiologia , Natação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Development ; 151(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940461

RESUMO

The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Coluna Vertebral , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Coluna Vertebral/embriologia , Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Genes Homeobox/genética , Oryzias/genética , Oryzias/embriologia , Camundongos
3.
Semin Cell Dev Biol ; 152-153: 44-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029058

RESUMO

The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.


Assuntos
Proteínas de Homeodomínio , Medula Espinal , Animais , Proteínas de Homeodomínio/metabolismo , Medula Espinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular/genética , Neurônios Motores/metabolismo , Vertebrados
4.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645372

RESUMO

Hox genes encode evolutionarily conserved transcription factors that are essential for the proper development of bilaterian organisms. Hox genes are unique because they are spatially and temporally regulated during development in a manner that is dictated by their tightly linked genomic organization. Although their genetic function during embryonic development has been interrogated, less is known about how these transcription factors regulate downstream genes to direct morphogenetic events. Moreover, the continued expression and function of Hox genes at postnatal and adult stages highlights crucial roles for these genes throughout the life of an organism. Here, we provide an overview of Hox genes, highlighting their evolutionary history, their unique genomic organization and how this impacts the regulation of their expression, what is known about their protein structure, and their deployment in development and beyond.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Humanos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Morfogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais
5.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34351412

RESUMO

The neuroblast timer genes hunchback, Krüppel, nubbin and castor are expressed in temporal sequence in neural stem cells, and in corresponding spatial sequence along the Drosophila blastoderm. As canonical gap genes, hunchback and Krüppel play a crucial role in insect segmentation, but the roles of nubbin and castor in this process remain ambiguous. We have investigated the expression and functions of nubbin and castor during segmentation in the beetle Tribolium. We show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone, and that Tc-nubbin regulates segment identity redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Simultaneous knockdown of Tc-nubbin, Tc-giant and Tc-knirps results in the formation of ectopic legs on abdominal segments. This homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


Assuntos
Padronização Corporal/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Células-Tronco Neurais/metabolismo , Fatores do Domínio POU/genética , Tribolium/embriologia , Tribolium/genética , Animais , Blastoderma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Fatores do Domínio POU/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
Insect Mol Biol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39314071

RESUMO

The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.

7.
Mol Biol Rep ; 51(1): 964, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240390

RESUMO

The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Sistema Imunitário , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias/genética , Neoplasias/imunologia , RNA Longo não Codificante/genética , Genes Homeobox/genética , Sistema Imunitário/metabolismo , Animais
8.
Genes Dev ; 30(24): 2657-2662, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087711

RESUMO

The genome is organized into repeating topologically associated domains (TADs), each of which is spatially isolated from its neighbor by poorly understood boundary elements thought to be conserved across cell types. Here, we show that deletion of CTCF (CCCTC-binding factor)-binding sites at TAD and sub-TAD topological boundaries that form within the HoxA and HoxC clusters during differentiation not only disturbs local chromatin domain organization and regulatory interactions but also results in homeotic transformations typical of Hox gene misregulation. Moreover, our data suggest that CTCF-dependent boundary function can be modulated by competing forces, such as the self-assembly of polycomb domains within the nucleus. Therefore, CTCF boundaries are not merely static structural components of the genome but instead are locally dynamic regulatory structures that control gene expression during development.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Componentes Genômicos/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Padronização Corporal/genética , Fator de Ligação a CCCTC , Células Cultivadas , Células-Tronco Embrionárias , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Domínios Proteicos
9.
Exp Mol Pathol ; 134: 104871, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696326

RESUMO

Homeobox (HOX) genes encode highly conserved transcription factors that play vital roles in embryonic development. DNA methylation is a pivotal regulatory epigenetic signaling mark responsible for regulating gene expression. Abnormal DNA methylation is largely associated with the aberrant expression of HOX genes, which is implicated in a broad range of human diseases, including cancer. Numerous studies have clarified the mechanisms of DNA methylation in both physiological and pathological processes. In this review, we focus on how DNA methylation regulates HOX genes and briefly discuss drug development approaches targeting these mechanisms.


Assuntos
Genes Homeobox , Neoplasias , Humanos , Genes Homeobox/genética , Metilação de DNA/genética , Neoplasias/genética , Fatores de Transcrição/genética , Desenvolvimento Embrionário/genética
10.
Development ; 146(5)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833380

RESUMO

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Isópteros/embriologia , Hormônios Juvenis/metabolismo , Mandíbula/embriologia , Proteínas Nucleares/metabolismo , Animais , Comportamento Animal , Padronização Corporal , Epistasia Genética , Perfilação da Expressão Gênica , Genes Homeobox , Insulina/metabolismo , Isópteros/genética , Muda , Morfogênese , Interferência de RNA , Transdução de Sinais
11.
Proc Biol Sci ; 289(1982): 20220705, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36264643

RESUMO

In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.


Assuntos
Anelídeos , Poliquetos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Anelídeos/genética , Vertebrados/genética
12.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328315

RESUMO

Hepatitis C virus (HCV) infection causes liver pathologies, including hepatocellular carcinoma (HCC). Homeobox (HOX) gene products regulate embryonic development and are associated with tumorigenesis, although the regulation of HOX genes by HCV infection has not been clarified in detail. We examined the effect of HCV infection on HOX gene expression. In this study, HCV infection induced more than half of the HOX genes and reduced the level of histone H2A monoubiquitination on lysine 119 (K119) (H2Aub), which represses HOX gene promoter activity. HCV infection also promoted proteasome-dependent degradation of RNF2, which is an E3 ligase mediating H2A monoubiquitination as a component of polycomb repressive complex 1. Since full-genomic replicon cells but not subgenomic replicon cells exhibited reduced RNF2 and H2Aub levels and induction of HOX genes, we focused on the core protein. Expression of the core protein reduced the amounts of RNF2 and H2Aub and induced HOX genes. Treatment with LY-411575, which can reduce HCV core protein expression via signal peptide peptidase (SPP) inhibition without affecting other viral proteins, dose-dependently restored the amounts of RNF2 and H2Aub in HCV-infected cells and impaired the induction of HOX genes and production of viral particles but not viral replication. The chromatin immunoprecipitation assay results also indicated infection- and proteasome-dependent reductions in H2Aub located in HOX gene promoters. These results suggest that HCV infection or core protein induces HOX genes by impairing histone H2A monoubiquitination via a reduction in the RNF2 level.IMPORTANCE Recently sustained virologic response can be achieved by direct-acting antiviral (DAA) therapy in most hepatitis C patients. Unfortunately, DAA therapy does not completely eliminate a risk of hepatocellular carcinoma (HCC). Several epigenetic factors, including histone modifications, are well known to contribute to hepatitis C virus (HCV)-associated HCC. However, the regulation of histone modifications by HCV infection has not been clarified in detail. In this study, our data suggest that HCV infection or HCV core protein expression impairs monoubiquitination of histone H2A K119 in the homeobox (HOX) gene promoter via destabilization of RNF2 and then induces HOX genes. Several lines of evidence suggest that the expression of several HOX genes is dysregulated in certain types of tumors. These findings reveal a novel mechanism of HCV-related histone modification and may provide information about new targets for diagnosis and prevention of HCC occurrence.


Assuntos
Genes Homeobox/genética , Hepacivirus/fisiologia , Histonas/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Código das Histonas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Core Viral/metabolismo
13.
J Exp Zool B Mol Dev Evol ; 338(4): 215-224, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34855303

RESUMO

In this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana. In the Hox gene cluster of the calanoid copepod Eurytemora affinis, all the Hox genes were present linearly in the genome but the Antp gene was duplicated. Of the three representative copepods, the P. nana Hox gene cluster was the most compact due to its small genome size. The Hox gene expression profile patterns in the three representative copepods were stage-specific. The Lab, Dfd, Scr, Pb, Ftz, and Hox3 genes showed a high expression in early developmental stages but Antp, Ubx, Abd-A, and Abd-B genes were mostly expressed in later developmental stages, implying that these Hox genes may be closely associated with the development of segment identity during early development.


Assuntos
Copépodes , Genes Homeobox , Animais , Copépodes/genética , Medicamentos de Ervas Chinesas , Chumbo/química , Família Multigênica
14.
Dev Biol ; 461(2): 110-123, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032579

RESUMO

During development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the ß-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1-4 â€‹h pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , beta Catenina/metabolismo , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular , Fusão Celular , Linhagem da Célula , Proteínas do Citoesqueleto/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Tegumento Comum/anatomia & histologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única , Processos Estocásticos , Imagem com Lapso de Tempo , Vulva/citologia , Via de Sinalização Wnt
15.
J Cell Mol Med ; 24(5): 3246-3251, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970886

RESUMO

We aimed to discover cell line-specific overexpressed HOX genes responsible for chemoresistance and to identify the mechanisms behind HOX-induced cell line-specific chemoresistance in EOC. Ten HOX genes and eight EOC cell lines were tested for any cell line-specific overexpression that presents a mutually exclusive pattern. Cell viability was evaluated after treatment with cisplatin and/or siRNA for cell line-specific overexpressed HOX genes. Immunohistochemical (IHC) staining for HOXB9 was performed in 84 human EOC tissues. HOXA10 and HOXB9 were identified as cell line-specific overexpressed HOX genes for SKOV-3 and RMUG-S, respectively. Inhibiting the expression of cell line-specific HOX genes, but not of other HOX genes, significantly decreased cell viability. In SKOV-3 cells, cell viability decreased to 46.5% after initial 10 µM cisplatin treatment; however, there was no further decrease upon additional treatment with HOXA10 siRNA. In contrast, cell viability did not significantly decrease upon cisplatin treatment in RMUG-S cells, but decreased to 65.5% after additional treatment with HOXB9 siRNA. In both cell lines, inhibiting cell line-specific HOX expression enhanced apoptosis but suppressed the expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, MMP9, and Oct4. IHC analysis showed that platinum-resistant cancer tissues more frequently had high HOXB9 expression than platinum-sensitive cancer tissues. HOXB9, which is overexpressed in RMUG-S but not in SKOV-3 cells, appeared to be associated with cell line-specific platinum resistance in RMUG-S. Inhibiting HOXB9 overexpression in RMUG-S cells may effectively eliminate platinum-resistant ovarian cancer cells by facilitating apoptosis and inhibiting EMT.


Assuntos
Carcinoma Epitelial do Ovário/genética , Proteínas Homeobox A10/genética , Proteínas de Homeodomínio/genética , Apoptose/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
16.
Dev Genes Evol ; 230(2): 105-120, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036446

RESUMO

The Hox gene labial (lab) governs the formation of the tritocerebral head segment in insects and spiders. However, the morphology that results from lab action is very different in the two groups. In insects, the tritocerebral segment (intercalary segment) is reduced and lacks appendages, whereas in spiders the corresponding segment (pedipalpal segment) is a proper segment including a pair of appendages (pedipalps). It is likely that this difference between lab action in insects and spiders is mediated by regulatory targets or interacting partners of lab. However, only a few such genes are known in insects and none in spiders. We have conducted a candidate gene screen in the spider Parasteatoda tepidariorum using as candidates Drosophila melanogaster genes known to (potentially) interact with lab or to be expressed in the intercalary segment. We have studied 75 P. tepidariorum genes (including previously published and duplicated genes). Only 3 of these (proboscipedia-A (pb-A) and two paralogs of extradenticle (exd)) showed differential expression between leg and pedipalp. The low success rate points to a weakness of the candidate gene approach when it is applied to lineage specific organs. The spider pedipalp has no counterpart in insects, and therefore relying on insect data apparently cannot identify larger numbers of factors implicated in its specification and formation. We argue that in these cases a de novo approach to gene discovery might be superior to the candidate gene approach.


Assuntos
Proteínas de Artrópodes/genética , Padronização Corporal/genética , Drosophila melanogaster/genética , Genes Homeobox , Cabeça/embriologia , Proteínas de Homeodomínio/genética , Aranhas/genética , Animais , Proteínas de Drosophila/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Extremidades/embriologia , Extremidades/crescimento & desenvolvimento , Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Cabeça/crescimento & desenvolvimento , Hibridização In Situ , Sistema Nervoso/metabolismo , Ligação Proteica , Aranhas/embriologia , Aranhas/crescimento & desenvolvimento , Aranhas/metabolismo
17.
BMC Genet ; 21(1): 24, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131722

RESUMO

BACKGROUND: Hox transcription factors are master regulators of animal development. Although highly conserved, they can contribute to the formation of novel biological characteristics when modified, such as during the generation of hybrid species, thus potentially serving as species-specific molecular markers. Here, we systematically studied the evolution of genomic sequences of Hox loci in an artificial allotetraploid lineage (4nAT, 4n = 200) derived from a red crucian carp (♀, RCC, 2n = 100) × common carp (♂, CC, 2n = 100) cross and its parents (RCC and CC). RESULTS: PCR amplification yielded 23 distinct Hox gene fragments from 160 clones in 4nAT, 22 fragments from 90 clones in RCC, and 19 fragments from 90 clones in CC. Sequence alignment of the HoxA3a and HoxC10a genes indicated both the inheritance and loss of paternal genomic DNA in 4nAT. The HoxA5a gene from 4nAT consisted of two subtypes from RCC and two subtypes from CC, indicating that homologous recombination occurred in the 4nAT hybrid genome. Moreover, 4nAT carried genomic pseudogenization in the HoxA10b and HoxC13a loci. Interestingly, a new type of HoxC9a gene was found in 4nAT as a hybrid sequence of CC and RCC by recombination in the intronic region. CONCLUSION: The results revealed the influence of Hox genes during polyploidization in hybrid fish. The data provided insight into the evolution of vertebrate genomes and might be benefit for artificial breeding programs.


Assuntos
Carpas/genética , Genes Homeobox/genética , Carpa Dourada/genética , Hibridização Genética , Animais , Feminino , Variação Genética/genética , Genoma/genética , Genômica , Íntrons/genética , Masculino , Alinhamento de Sequência , Tetraploidia
18.
BMC Genet ; 20(1): 87, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779581

RESUMO

BACKGROUND: Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. RESULT: In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. CONCLUSIONS: Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.


Assuntos
Carpas/fisiologia , Variação Genética , Carpa Dourada/fisiologia , Proteínas de Homeodomínio/genética , Animais , Carpas/genética , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Carpa Dourada/genética , Hibridização Genética , Masculino , Família Multigênica , Análise de Sequência de DNA/veterinária
19.
Dev Biol ; 422(2): 146-154, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28041967

RESUMO

Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in the gradual colinear activation of the Hox clusters. We found that Hox temporally colinear expression is severely affected in epiblast stem cells derived from Cdx null embryos. We demonstrate that after initiation of 3' Hox gene transcription, Cdx activity is crucial for H3K27ac deposition and for accessibility of cis-regulatory elements around the central - or 'trunk' - Hox genes. We thereby identify a Cdx-responsive segment of HoxA, immediately 5' to the recently defined regulatory domain orchestrating initial transcription of the first Hox gene. We propose that this partition of HoxA into a Wnt-driven 3' part and the newly found Cdx-dependent middle segment of the cluster, forms a structural fundament of Hox colinearity of expression. Subsequently to initial Wnt-induced activation of 3' Hox genes, Cdx transcription factors would act as crucial effectors for activating central Hox genes, until the last gene of the cluster arrests the process.


Assuntos
Fator de Transcrição CDX2/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Ativação Transcricional/genética , Via de Sinalização Wnt/genética , Acetilação , Animais , Padronização Corporal/genética , Fator de Transcrição CDX2/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Genes Homeobox/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Família Multigênica/genética , Sequências Reguladoras de Ácido Nucleico/genética
20.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358333

RESUMO

Ehrlichia chaffeensis has a group of well-characterized type I secreted tandem repeat protein (TRP) effectors that have moonlighting capabilities. TRPs modulate various cellular processes, reprogram host gene transcription as nucleomodulins, function as ubiquitin ligases, and directly activate conserved host cell signaling pathways to promote E. chaffeensis infection. One TRP-interacting host target is polycomb group ring finger protein 5 (PCGF5), a member of the polycomb group (PcG) protein family and a component of the polycomb repressive complex 1 (PRC1). The current study demonstrates that during early infection, PCGF5 strongly colocalizes with TRP120 in the nucleus and later dramatically redistributes to the ehrlichial vacuole along with other PCGF isoforms. Ectopic expression and immunoprecipitation of TRP120 confirmed the interaction of TRP120 with multiple different PCGF isoforms. At 48 h postinfection, a dramatic redistribution of PCGF isoforms from the nucleus to the ehrlichial vacuole was observed, which also temporally coincided with proteasomal degradation of PCGF isoforms and TRP120 expression on the vacuole. A decrease in PRC1-mediated repressive chromatin mark and an altered transcriptional activity in PRC1-associated Hox genes primarily from HOXB and HOXC clusters were observed along with the degradation of PCGF isoforms, suggesting disruption of the PRC1 in E. chaffeensis-infected cells. Notably, small interfering RNA (siRNA)-mediated knockdown of PCGF isoforms resulted in significantly increased E. chaffeensis infection. This study demonstrates a novel strategy in which E. chaffeensis manipulates PRC complexes through interactions between TRP120 and PCGF isoforms to promote infection.


Assuntos
Ehrlichia chaffeensis/fisiologia , Ehrlichiose/metabolismo , Ehrlichiose/microbiologia , Interações Hospedeiro-Patógeno , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Rastreamento de Células , Ehrlichiose/genética , Genes Homeobox , Histonas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas do Grupo Polycomb/genética , Isoformas de Proteínas , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA