Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(18): 4153-4171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797772

RESUMO

This paper introduces an enhanced technique for analyzing iron isotopes in complex marine and biological samples. A dedicated iron purification method for biological marine matrices, utilizing three ion exchange columns, is validated. The MC-ICPMS in pseudo-high-resolution mode determines precise iron isotopic ratios, with sensitivity improved through the DSN-100 desolvating nebulizer system and Apex-IR. Only 2 µg of iron on DSN versus 1 µg on Apex is needed for six replicates (30-60 times improvement) while 10 to 20 µg is required for a single measurement on a wet system considering the resolution power (Rp) is maintained at 11,000-13,000. The Ni-doping method with a Fe/Ni ratio of 1 yields more accurate isotopic ratios than standard-sample bracketing alone. Measurement reproducibility of triplicate samples from marine biological experiments on MC-ICPMS is ± 0.03‰ (2SD) for δ56Fe and ± 0.07‰ for δ57Fe (2SD). This study introduces a novel iron purification process specifically designed for marine and biological samples, enhancing sensitivity and enabling more reliable measurements with smaller sample sizes and reduced uncertainties. It proposes iron isotopic compositions for biological reference materials, offering a valuable reference dataset in diverse scientific disciplines.


Assuntos
Isótopos de Ferro , Espectrometria de Massas , Isótopos de Ferro/análise , Espectrometria de Massas/métodos , Animais , Reprodutibilidade dos Testes , Água do Mar/química , Ferro/análise
2.
Proc Natl Acad Sci U S A ; 112(5): 1298-303, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605942

RESUMO

Chondritic meteorites are made of primitive components that record the first steps of formation of solids in our Solar System. Chondrules are the major component of chondrites, yet little is known about their formation mechanisms and history within the solar protoplanetary disk (SPD). We use the reconstructed concentrations of short-lived (26)Al in chondrules to constrain the timing of formation of their precursors in the SPD. High-precision bulk magnesium isotopic measurements of 14 chondrules from the Allende chondrite define a (26)Al isochron with (26)Al/(27)Al = 1.2(±0.2) × 10(-5) for this subset of Allende chondrules. This can be considered to be the minimum bulk chondrule (26)Al isochron because all chondrules analyzed so far with high precision (∼50 chondrules from CV and ordinary chondrites) have an inferred minimum bulk initial ((26)Al/(27)Al) ≥ 1.2 × 10(-5). In addition, mineral (26)Al isochrons determined on the same chondrules show that their formation (i.e., fusion of their precursors by energetic events) took place from 0 Myr to ∼2 Myr after the formation of their precursors, thus showing in some cases a clear decoupling in time between the two events. The finding of a minimum bulk chondrule (26)Al isochron is used to constrain the astrophysical settings for chondrule formation. Either the temperature of the condensation zone dropped below the condensation temperature of chondrule precursors at ∼1.5 My after the start of the Solar System or the transport of precursors from the condensation zone to potential storage sites stopped after 1.5 My, possibly due to a drop in the disk accretion rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA