RESUMO
BACKGROUND: Accurate diagnosis and timely treatment are crucial in combating malaria. METHODS: A total of 449 samples were screened for Plasmodium falciparum infection by expert microscopy, qPCR, and three RDTs, namely Rapigen Biocredit Malaria Ag Pf (detecting HRP2 and pLDH on separate bands), Abbott NxTek Eliminate Malaria Ag Pf (detecting HRP2), and SD Bioline Malaria Ag Pf (detecting HRP2). hrp2/3 deletion typing was done by digital PCR. RESULTS: 45.7% (205/449) individuals tested positive by qPCR for P. falciparum with a mean parasite density of 12.5 parasites/µL. Using qPCR as reference, the sensitivity of microscopy was 28.3% (58/205), the Biocredit RDT was 52.2% (107/205), the NxTek RDT was 49.3% (101/205), and the Bioline RDT was 39.5% (81/205). When only samples with densities > 20 parasites/µL were included (n = 89), sensitivity of 62.9% (56/89) by microscopy, 88.8% (79/89) by Biocredit, 88.8% (79/89) by NxTek, and 78.7% (70/89) by Bioline were obtained. All three RDTs demonstrated specificities > 95%. The limits of detection (95% probability that a sample tested positive) was 4393 parasites/µL (microscopy), 56 parasites/µL (Biocredit, considering either HRP2 or pLDH), 84 parasites/µL (NxTek), and 331 parasites/µL (Bioline). None of the three qPCR-confirmed P. falciparum positive samples, identified solely through the pLDH target, or eight samples negative for all RDTs but qPCR-positive at densities > 20 parasites/µL carried hrp2/3 deletions. CONCLUSION: The Biocredit and NxTek RDTs demonstrated comparable diagnostic efficacies. All three RDTs performed better than microscopy.
Assuntos
Testes Diagnósticos de Rotina , Malária Falciparum , Plasmodium falciparum , Sensibilidade e Especificidade , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Humanos , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/genética , Gana , Testes Diagnósticos de Rotina/métodos , Pré-Escolar , Adolescente , Adulto , Criança , Adulto Jovem , Feminino , Pessoa de Meia-Idade , Masculino , Microscopia/métodos , Lactente , Reação em Cadeia da Polimerase em Tempo Real/métodos , Idoso , Idoso de 80 Anos ou mais , Testes de Diagnóstico RápidoRESUMO
BACKGROUND: Dual hrp2/hrp3 genes deletions in P. falciparum isolates are increasingly reported in malaria-endemic countries and can produce false negative RDT results leading to inadequate case management. Data on the frequency of hrp2/hrp3 deleted parasites are rarely available and it has become necessary to investigate the issue in Burkina Faso. METHODS: Plasmodium falciparum-positive dried blood spots were collected during a cross-sectional household survey of the malaria asymptomatic children from Orodara, Gaoua, and Banfora. Amplicons from the target regions (exon 2 of hrp2 and hrp3 genes) were generated using multiplexed nested PCR and sequenced according to Illumina's MiSeq protocol. RESULTS: A total of 251 microscopically positive parasite isolates were sequenced to detect hrp2 and hrp3 gene deletions. The proportion of RDTs negative cases among microscopy positive slides was 12.7% (32/251). The highest prevalence of negative RDTs was found in Orodara 14.3% (5/35), followed by Gaoua 13.1%(24/183), and Banfora 9.1% (3/33). The study found that 95.6% of the parasite isolates were wild type hrp2/ hrp3 while 4.4% (11/251) had a single hrp2 deletion. Of the 11 hrp2 deletion samples, 2 samples were RDT negative (mean parasitaemia was 83 parasites/ µL) while 9 samples were RDT positive with a mean parasitaemia of 520 parasites /µL (CI95%: 192-1239). The highest frequency of hrp2 deletion 4/35 (11.4%) was found in Orodara, while it was similar in the other two sites (< 3.5%). No single deletion of the hrp3 or dual deletion hrp2/3 gene was detected in this study. CONCLUSION: These results demonstrate that P. falciparum isolates lacking hrp2 genes are present in 4.4% of samples obtained from the asymptomatic children population in three sites in Burkina Faso. These parasites are circulating and causing malaria, but they are also still detectable by HRP2-based RTDs due to the presence of the intact pfhrp3 gene.
Assuntos
Malária Falciparum , Plasmodium falciparum , Criança , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/análise , Histidina/genética , Deleção de Genes , Estudos Transversais , Burkina Faso/epidemiologia , Malária Falciparum/parasitologia , Testes Diagnósticos de Rotina/métodosRESUMO
BACKGROUND: Artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) are the currently recommended first-and second-line therapies for uncomplicated Plasmodium falciparum infections in Chad. This study assessed the efficacy of these artemisinin-based combinations, proportion of day 3 positive patients, proportions of molecular markers associated with P. falciparum resistance to anti-malarial drugs and variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single-arm prospective study assessing the efficacy of AS-AQ and AL at three sites (Doba, Kelo and Koyom) was conducted between November 2020 to January 2021. Febrile children aged 6 to 59 months with confirmed uncomplicated P. falciparum infection were enrolled sequentially first to AS-AQ and then AL at each site and followed up for 28 days. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples collected on day 0 were analysed for mutations in pfkelch13, pfcrt, pfmdr-1, pfdhfr, pfdhps genes and deletions in pfhrp2/pfhrp3 genes. RESULTS: By the end of 28-day follow-up, per-protocol PCR corrected ACPR of 97.8% (CI 95% 88.2-100) in Kelo and 100% in Doba and Kayoma were observed among AL treated patients. For ASAQ, 100% ACPR was found in all sites. All, but one patient, did not have parasites detected on day 3. Out of the 215 day 0 samples, 96.7% showed pfkelch13 wild type allele. Seven isolates carried nonsynonymous mutations not known to be associated artemisinin partial resistance (ART-R). Most of samples had a pfcrt wild type allele (79% to 89%). The most prevalent pfmdr-1 allele detected was the single mutant 184F (51.2%). For pfdhfr and pfdhps mutations, the quintuple mutant allele N51I/C59R/S108N + G437A/540E responsible for SP treatment failures in adults and children was not detected. Single deletion in the pfhrp2 and pfhrp3 gene were detected in 10/215 (4.7%) and 2/215 (0.9%), respectively. Dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, were observed in 5/215 (2.3%) isolates. CONCLUSION: The results of this study confirm that AS-AQ and AL treatments are highly efficacious in study areas in Chad. The absence of known pfkelch13 mutations in the study sites and the high parasite clearance rate at day 3 suggest the absence of ART-R. The absence of pfdhfr/pfdhps quintuple or sextuple (quintuple + 581G) mutant supports the continued use of SP for IPTp during pregnancy. The presence of parasites with dual pfhrp2/pfhrp3 deletions, potentially threatening the efficacy of HRP2-based RDTs, warrants the continued surveillance. Trial registration ACTRN12622001476729.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Adulto , Feminino , Gravidez , Humanos , Artesunato , Antimaláricos/uso terapêutico , Amodiaquina/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Chade , Estudos Prospectivos , Artemeter , Malária Falciparum/tratamento farmacológico , Artemisininas/uso terapêuticoRESUMO
BACKGROUND: Rapid diagnostic tests (RDTs) have been extensively evaluated and play an important role in malaria diagnosis. However, the accuracy of RDTs for malaria diagnosis in patients with sickle cell disease (SCD) is unknown. METHODS: We compared the performance of a histidine rich protein 2 (HRP-2)-based RDT (First Response) and a lactate dehydrogenase (LDH)-based RDT (Optimal) with routine microscopy as reference standard in 445 children with SCD and an acute febrile illness in Accra, Ghana. RESULTS: The overall sensitivity, specificity, and positive and negative predictive values of the HRP-2-based RDTs were 100%, 95.7%, 73.8%, and 100%, respectively. Comparable values for the LDH-based RDTs were 91.7%, 99.5%, 95.7%, and 99.0%, respectively. A total of 423 results were true in both tests, 1 result was false in both tests, 16 results were false in the HRP-2 test only, and 5 were false in the LDH test only (McNemar test, Pâ =â .03). At follow-up, 73.7% (28/38), 52.6% (20/38), 48.6% (17/35), and 13.2% (5/38) of study participants were HRP-2 positive on days 14, 28, 35, and 42, respectively, compared with 0%, 2.6% (1/38), 2.9% (1/35), and 2.6% (1/38) for LDH. CONCLUSION: The HRP2-based RDT fulfilled World Health Organization criteria for malaria diagnosis in patients with SCD and may provide diagnostic evidence for treatment to begin in cases in which treatment would otherwise have begun presumptively based on symptoms, whereas LDH-based RDTs may be more suitable as a confirmatory test in low-parasitemic subgroups, such as patients with SCD.
Assuntos
Anemia Falciforme , Malária Falciparum , Malária , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico , Antígenos de Protozoários , Criança , Testes Diagnósticos de Rotina/métodos , Histidina , Humanos , L-Lactato Desidrogenase , Malária/diagnóstico , Malária Falciparum/diagnóstico , Plasmodium falciparum , Proteínas de Protozoários , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Accurate detection of asymptomatic malaria parasitaemia in children living in high transmission areas is important for malaria control and reduction programmes that employ screen-and-treat surveillance strategies. Relative to microscopy and conventional rapid diagnostic tests (RDTs), ultrasensitive RDTs (us-RDTs) have demonstrated reduced limits of detection with increased sensitivity to detect parasitaemia in symptomatic individuals. In this study, the performance of the NxTek™ Eliminate Malaria P.f test was compared with traditional microscopy and quantitative polymerase chain reaction (qPCR) testing methods of detection for P. falciparum parasitaemia among asymptomatic children aged 7-14 years living in an area of high malaria transmission intensity in western Kenya. METHODS: In October 2020, 240 healthy children without any reported malaria symptoms were screened for the presence of P. falciparum parasitaemia; 120 children were randomly selected to participate in a follow-up visit at 6-10 weeks. Malaria parasitaemia was assessed by blood-smear microscopy, us-RDT, and qPCR of a conserved var gene sequence from genomic DNA extracted from dried blood spots. Sensitivity, specificity, and predictive values were calculated for field diagnostic methods using qPCR as the gold standard. Comparison of detectable parasite density distributions and area under the curve were also calculated to determine the effectiveness of the us-RDT in detecting asymptomatic infections with low parasite densities. RESULTS: The us-RDT detected significantly more asymptomatic P. falciparum infections than microscopy (42.5% vs. 32.2%, P = 0.002). The positive predictive value was higher for microscopy (92.2%) than for us-RDT (82.4%). However, false negative rates were high for microscopy and us-RDT, with negative predictive values of 53.7% and 54.6%, respectively. While us-RDT detected significantly more infections than microscopy overall, the density distribution of detectable infections did not differ (P = 0.21), and qPCR detected significantly more low-density infections than both field methods (P < 0.001, for both comparisons). CONCLUSIONS: Us-RDT is more sensitive than microscopy for detecting asymptomatic malaria parasitaemia in children. Though the detectable parasite density distributions by us-RDT in our specific study did not significantly differ from microscopy, the additional sensitivity of the us-RDT resulted in more identified asymptomatic infections in this important group of the population and makes the use of the us-RDT advisable compared to other currently available malaria field detection methods.
Assuntos
Malária Falciparum , Plasmodium falciparum , Criança , Humanos , Antígenos de Protozoários , Infecções Assintomáticas/epidemiologia , Testes Diagnósticos de Rotina/métodos , Quênia , Malária Falciparum/epidemiologia , Parasitemia/parasitologia , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS: A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS: Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS: Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.
Assuntos
Plasmodium falciparum , Humanos , MaliRESUMO
BACKGROUND: Immunoassay platforms that simultaneously detect malaria antigens including histidine-rich protein 2 (HRP2)/HRP3 and Plasmodium lactate dehydrogenase (pLDH), are useful epidemiological tools for rapid diagnostic test evaluation. This study presents the comparative evaluation of two multiplex platforms in identifying Plasmodium falciparum with presence or absence of HRP2/HRP3 expression as being indicative of hrp2/hrp3 deletions and other Plasmodium species. Moreover, correlation between the malaria antigen measurements performed at these platforms is assessed after calibrating with either assay standards or international standards and the cross-reactivity among Plasmodium species is examined. METHODS: A 77-member panel of specimens composed of the World Health Organization (WHO) international Plasmodium antigen standards, cultured parasites for P. falciparum and Plasmodium knowlesi, and clinical specimens with mono-infections for P. falciparum, Plasmodium vivax, and Plasmodium malariae was generated as both whole blood and dried blood spot (DBS) specimens. Assays for HRP2, P. falciparum-specific pLDH (PfLDH), P. vivax-specific pLDH (PvLDH), and all human Plasmodium species Pan malaria pLDH (PanLDH) on the Human Malaria Array Q-Plex and the xMAP platforms were evaluated with these panels. RESULTS: The xMAP showed a higher percent positive agreement for identification of hrp2-deleted P. falciparum and Plasmodium species in whole blood and DBS than the Q-Plex. For whole blood samples, there was a highly positive correlation between the two platforms for PfLDH (Pearson r = 0.9926) and PvLDH (r = 0. 9792), moderate positive correlation for HRP2 (r = 0.7432), and poor correlation for PanLDH (r = 0.6139). In Pearson correlation analysis between the two platforms on the DBS, the same assays were r = 0.9828, r = 0.7679, r = 0.6432, and r = 0.8957, respectively. The xMAP HRP2 assay appeared to cross-react with HRP3, while the Q-Plex did not. The Q-Plex PfLDH assay cross-reacted with P. malariae, while the xMAP did not. For both platforms, P. knowlesi was detected on the PvLDH assay. The WHO international standards allowed normalization across both platforms on their HRP2, PfLDH, and PvLDH assays in whole blood and DBS. CONCLUSIONS: Q-Plex and xMAP show good agreement for identification of P. falciparum mutants with hrp2/hrp3 deletions, and other Plasmodium species. Quantitative results from both platforms, normalized into international units for HRP2, PfLDH, and PvLDH, showed good agreement and should allow comparison and analysis of results generated by either platform.
Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium knowlesi , Antígenos de Protozoários/análise , Testes Diagnósticos de Rotina/métodos , Humanos , Imunoensaio , L-Lactato Desidrogenase/análise , Malária/diagnóstico , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Malária Vivax/diagnóstico , Plasmodium falciparum , Proteínas de Protozoários , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: The ability of malaria rapid diagnostic tests (RDTs) to effectively detect active infections is being compromised by the presence of malaria strains with genomic deletions at the hrp2 and hrp3 loci, encoding the antigens most commonly targeted in diagnostics for Plasmodium falciparum detection. The presence of such deletions can be determined in publically available P. falciparum whole genome sequencing (WGS) datasets. A computational approach was developed and validated, termed Gene Coverage Count and Classification (GC3), to analyse genome-wide sequence coverage data and provide informative outputs to assess presence and coverage profile of a target locus in WGS data. GC3 was applied to detect deletions at hrp2 and hrp3 (hrp2/3) and flanking genes in different geographic regions and across time points. METHODS: GC3 uses Python and R scripts to extract locus read coverage metrics from mapped WGS data according to user-defined parameters and generates relevant tables and figures. GC3 was tested using WGS data for laboratory reference strains with known hrp2/3 genotypes, and its results compared to those of a hrp2/3-specific qPCR assay. Samples with at least 25% of coding region positions with zero coverage were classified as having a deletion. Publicly available sequence data was analysed and compared with published deletion frequency estimates. RESULTS: GC3 results matched the expected coverage of known laboratory reference strains. Agreement between GC3 and a hrp2/3-specific qPCR assay reported for 19/19 (100%) hrp2 deletions and 18/19 (94.7%) hrp3 deletions. Among Cambodian (n = 127) and Brazilian (n = 20) WGS datasets, which had not been previously analysed for hrp2/3 deletions, GC3 identified hrp2 deletions in three and four samples, and hrp3 deletions in 10 and 15 samples, respectively. Plots of hrp2/3 coding regions, grouped by year of sample collection, showed a decrease in median standardized coverage among Malawian samples (n = 150) suggesting the importance of a careful, properly controlled follow up to determine if an increase in frequency of deletions has occurred between 2007-2008 and 2014-2015. Among Malian (n = 90) samples, median standardized coverage was lower in 2002 than 2010, indicating widespread deletions present at the gene locus in 2002. CONCLUSIONS: The GC3 tool accurately classified hrp2/3 deletions and provided informative tables and figures to analyse targeted gene coverage. GC3 is an appropriate tool when performing preliminary and exploratory assessment of locus coverage data.
Assuntos
Histidina , Comportamento de Utilização de Ferramentas , Plasmodium falciparum/genética , Sequenciamento Completo do Genoma , GenótipoRESUMO
BACKGROUND: Rapid diagnostic tests (RDTs) are widely used for malaria diagnosis of both symptomatic and asymptomatic infections. Although RDTs are a reliable and practical diagnostic tool, the sensitivity of histidine-rich protein 2 (HRP2)-based RDTs can be reduced if pfhrp2 or pfhrp3 (pfhrp2/3) gene deletions exist in the Plasmodium falciparum parasite population. This study evaluated dried blood spot (DBS) samples collected from a national household survey to investigate the presence of pfhrp2/3 deletions and the performance of the RDT used in the cross-sectional survey in a low transmission setting. METHODS: The 2015 Ethiopia Malaria Indicator Survey tested household members by RDT and collected DBS samples. DBS (n = 2648) from three regions in northern Ethiopia were tested by multiplex bead-based antigen detection assay after completion of the survey. The multiplex assay detected pan-Plasmodium lactate dehydrogenase (LDH), pAldolase, and HRP2 antigens in samples. Samples suspected for pfhrp2/3 gene deletions (pLDH and/or pAldolase positive but low or absent HRP2) were further investigated by molecular assays for gene deletions. Antigen results were also compared to each individual's RDT results. Dose-response logistic regression models were fit to estimate RDT level of detection (LOD) antigen concentrations at which 50, 75, 90, and 95% of the RDTs returned a positive result during this survey. RESULTS: Out of 2,648 samples assayed, 29 were positive for pLDH or pAldolase antigens but low or absent for HRP2 signal, and 15 of these samples (51.7%) were successfully genotyped for pfhrp2/3. Of these 15 P. falciparum infections, eight showed single deletions in pfhrp3, one showed a single pfhrp2 deletion, and six were pfhrp2/3 double-deletions. Six pfhrp2 deletions were observed in Tigray and one in Amhara. Twenty-five were positive for HRP2 by the survey RDT while the more sensitive bead assay detected 30 HRP2-positive samples. A lower concentration of HRP2 antigen generated a positive test result by RDT compared to pLDH (95% LOD: 16.9 ng/mL vs. 319.2 ng/mL, respectively). CONCLUSIONS: There is evidence of dual pfhrp2/3 gene deletions in the Tigray and Amhara regions of Ethiopia in 2015. As the prevalence of malaria was very low (< 2%), it is difficult to make strong conclusions on RDT performance, but these results challenge the utility of biomarkers in household surveys in very low transmission settings.
Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Infecções Assintomáticas , Estudos Transversais , Testes Diagnósticos de Rotina/métodos , Etiópia/epidemiologia , Deleção de Genes , Humanos , Malária/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genéticaRESUMO
BACKGROUND: Asymptomatic malaria infections can serve as potential reservoirs for malaria transmission. The density of parasites contained in these infections range from microscopic to submicroscopic densities, making the accurate detection of asymptomatic parasite carriage highly dependent on the sensitivity of the tools used for the diagnosis. This study sought to evaluate the sensitivities of a variety of molecular and serological diagnostic tools at determining the prevalence of asymptomatic Plasmodium falciparum parasite infections in two communities with varying malaria parasite prevalence. METHODS: Whole blood was collected from 194 afebrile participants aged between 6 and 70 years old living in a high (Obom) and a low (Asutsuare) malaria transmission setting of Ghana. Thick and thin blood smears, HRP2 based malaria rapid diagnostic test (RDT) and filter paper dried blood spots (DBS) were prepared from each blood sample. Genomic DNA was extracted from the remaining blood and used in Plasmodium specific photo-induced electron transfer polymerase chain reaction (PET-PCR) and Nested PCR, whilst the HRP2 antigen content of the DBS was estimated using a bead immunoassay. A comparison of malaria parasite prevalence as determined by each method was performed. RESULTS: Parasite prevalence in the high transmission site of Obom was estimated at 71.4%, 61.9%, 60%, 37.8% and 19.1% by Nested PCR, the HRP2 bead assay, PET-PCR, HRP2-RDT and microscopy respectively. Parasite prevalence in the low transmission site of Asutsuare was estimated at 50.1%, 11.2%, 5.6%, 0% and 2.2% by Nested PCR, the HRP2 bead assay, PET-PCR, RDT and microscopy, respectively. The diagnostic performance of Nested PCR, PET-PCR and the HRP2 bead assay was similar in Obom but in Asutsuare, Nested PCR had a significantly higher sensitivity than PET-PCR and the HRP2 bead assay, which had similar sensitivity. CONCLUSIONS: Nested PCR exhibited the highest sensitivity by identifying the highest prevalence of asymptomatic P. falciparum in both the high and low parasite prevalence settings. However, parasite prevalence estimated by the HRP2 bead assay and PET-PCR had the highest level of inter-rater agreement relative to all the other tools tested and have the advantage of requiring fewer processing steps relative to Nested PCR and producing quantitative results.
Assuntos
Malária Falciparum , Malária , Adolescente , Adulto , Idoso , Antígenos de Protozoários/genética , Criança , Testes Diagnósticos de Rotina/métodos , Gana/epidemiologia , Humanos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Sensibilidade e Especificidade , Adulto JovemRESUMO
BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker. METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients. RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection. CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.
Assuntos
Antígenos de Protozoários/análise , Antimaláricos/efeitos adversos , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Marcadores Genéticos , Genótipo , Humanos , Malária Falciparum/prevenção & controleRESUMO
BACKGROUND: Malaria has been identified as a significant public health burden, exhibiting a high risk of death and morbidity. In sub-Saharan Africa, most young children attending primary healthcare facilities are commonly diagnosed with malaria. Thus, introduction of malaria rapid diagnostic test (mRDT) kits and effective antimalarials has substantially improved the management of malaria cases. However, healthcare worker confidence and adherence to procedures dependent on malaria test results remain variable in high-burden settings due to lacking alternative point-of-care tests to diagnose other causes of fever. In this study, we compared the results of malaria screenings using mRDT and microscopy in febrile children presenting at a primary health facility. METHODS: This study was conducted at a primary health center in Owo, Ondo State, Nigeria. Children with fever were assessed for malaria by health staff and, where indicated, screened using Plasmodium falciparum histidine-rich protein-2 mRDT kits. Blood samples were collected on slides for microscopy and in hematocrit tubes for hematocrit determination simultaneously, whereas the mRDT test was done by routine health staff. Children found positive for malaria via mRDT were diagnosed as uncomplicated malaria cases and treated as outpatients using artemether-lumefantrine. Blood slides were read independently by two trained microscopists blinded to the mRDT results. The parasite densities were defined as average counts by both microscopists. We then assessed the sensitivity, specificity, and predictive value of mRDT for the diagnosis of malaria. RESULTS: We compared the test results of 250 febrile children who are under 15 years old. The test positivity rates were 93.6% (234/250) and 97.2% (243/250) using microscopy and rapid RDTs, respectively. The sensitivity and specificity of mRDT compared to microscopy were 100.0% and 43.8%, respectively, with a positive predictive value of 96.3% (95% CI 93.1-98.3). The hematocrit value was <30% in 64% of the children. CONCLUSION: As per our findings, mRDTs have correctly detected infections in febrile children. Healthcare workers and caregivers should be encouraged to act in accordance with the test results by means of regular feedback on the quality of mRDTs in use in malaria case management.
RESUMO
BACKGROUND: Plasmodium falciparum strains with mutations/deletions of the genes encoding the histidine-rich proteins 2/3 (pfhrp2/3) have emerged during the last 10 years leading to false-negative results in HRP2-based rapid diagnostic tests (RDTs). This can lead to unrecognized infections in individuals and to setbacks in malaria control in endemic countries where RDTs are the backbone of malaria diagnostics and control. CASE DESCRIPTION: Here the detection of a pfhrp2/3-negative P. falciparum infection acquired in Ethiopia by a 63-year old female traveller is presented. After onset of symptoms during travel, she was first tested negative for malaria, most probably by RDT, at a local hospital in Harar, Ethiopia. Falciparum malaria was finally diagnosed microscopically upon her return to Germany, over 4 weeks after infection. At a parasite density of approximately 5387 parasites/µl, two different high-quality RDTs: Palutop + 4 OPTIMA, NADALRMalaria PF/pan Ag 4 Species, did not respond at their respective P. falciparum test lines. pfhrp2/3 deletion was confirmed by multiplex-PCR. The patient recovered after a complete course of atovaquone and proguanil. According to the travel route, malaria was acquired most likely in the Awash region, Central Ethiopia. This is the first case of imported P. falciparum with confirmed pfhrp2/3 deletion from Ethiopia. CONCLUSION: HRP2-negative P. falciparum strains may not be recognized by the presently available HRP2-based RDTs. When malaria is suspected, confirmation by microscopy and/or qPCR is necessary in order to detect falciparum malaria, which requires immediate treatment. This case of imported P. falciparum, non-reactive to HRP2-based RDT, possibly underlines the necessity for standardized, nationwide investigations in Ethiopia and should alert clinicians from non-endemic countries to the possibility of false-negative RDT results which may increase in returning travellers with potentially life-threatening infections.
Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Etiópia , Feminino , Alemanha , Humanos , Pessoa de Meia-Idade , ViagemRESUMO
BACKGROUND: Early malaria diagnosis and its profiling require the development of new sensing platforms enabling rapid and early analysis of parasites in blood or saliva, aside the widespread rapid diagnostic tests (RDTs). METHODS: This study shows the performance of a cost-effective optical fiber-based solution to target the presence of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Unclad multimode optical fiber probes are coated with a thin gold film to excite Surface Plasmon Resonance (SPR) yielding high sensitivity to bio-interactions between targets and bioreceptors grafted on the metal surface. RESULTS: Their performances are presented in laboratory conditions using PBS spiked with growing concentrations of purified target proteins and within in vitro cultures. Two probe configurations are studied through label-free detection and amplification using secondary antibodies to show the possibility to lower the intrisic limit of detection. CONCLUSIONS: As malaria hits millions of people worldwide, the improvement and multiplexing of this optical fiber technique can be of great interest, especially for a future purpose of using multiple receptors on the fiber surface or several coated-nanoparticles as amplifiers.
Assuntos
Antígenos de Protozoários/isolamento & purificação , Plasmodium falciparum/química , Proteínas de Protozoários/isolamento & purificação , Técnicas Biossensoriais , Humanos , Fibras ÓpticasRESUMO
BACKGROUND: The Plasmodium falciparum antigen histidine rich protein 2 (HRP2) is a preferred target for malaria rapid diagnostic tests (RDTs) because of its abundant production by the parasite and thermal stability. As a result, a majority of RDTs procured globally target this antigen. However, previous reports from South America and recent reports from sub-Saharan Africa and Asia indicate that certain P. falciparum parasites have deletions of the gene coding for HRP2. The HRP2 antigen is paralogous to another P. falciparum antigen HRP3 and some antibodies to HRP2 cross-react with HRP3. Multiple parasites have been described with deletions of one or both hrp2 and hrp3 genes. It is unclear how the various combinations of hrp2 and hrp3 deletion genotypes affect clinical sensitivity of HRP2-based RDTs. METHODS: Cross-reactivity between HRP2 and HRP3 was tested on malaria RDTs using culture-adapted P. falciparum parasites with both hrp2 and hrp3 intact or with one or both genes deleted. Ten-fold serial dilutions of four culture-adapted P. falciparum parasites [3D7 (hrp2+/hrp3+), Dd2 (hrp2-/hrp3+), HB3 (hrp2+/hrp3-) and 3BD5 (hrp2-/hrp3-)] ranging from 100,000 to 0.01 parasites/µL were prepared. HRP2, Plasmodium lactate dehydrogenase (pLDH) and aldolase concentrations were determined for the diluted samples using a multiplex bead assay. The samples were subsequently tested on three RDT products designed to detect P. falciparum by HRP2 alone or in combination with pLDH. RESULTS: At parasite densities of approximately 1000 parasites/µL, parasites that expressed either hrp2 or hrp3 were detected by all three RDTs. Multiplex based antigen measurement using HRP2- conjugated beads demonstrated higher antigen concentration when both hrp2 and hrp3 genes were intact (3D7 parasites, 47.9 ng/ml) compared to HB3 (3.02 ng/mL) and Dd2 (0.20 ng/mL) strains that had one gene deleted. 3D7 at 10 parasites/µL (0.45 ng/mL) was reactive on all three RDT products whereas none of the other parasites were reactive at that density. CONCLUSIONS: Above a certain antigen threshold, HRP3 cross-reactivity on HRP2-based RDTs is sufficient to mask the effects of deletions of hrp2 only. Studies of hrp2 deletion and its effects on HRP2-based RDTs must be studied alongside hrp3 deletions and include clinical sample reactivity on HRP2-based tests.
Assuntos
Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/instrumentação , Deleção de Genes , Genes de Protozoários , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Reações Cruzadas , Plasmodium falciparum/genética , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Despite the widespread use of histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs), purified native HRP2 antigen is not standardly used in research applications or assessment of RDTs used in the field. METHODS: This report describes the purification of native HRP2 (nHRP2) from the HB3 Plasmodium falciparum culture strain. As this culture strain lacks pfhrp3 from its genome, it is an excellent source of HRP2 protein only and does not produce the closely-related HRP3. The nHRP2 protein was isolated from culture supernatant, infected red blood cells (iRBCs), and whole parasite lysate using nickel-metal chelate chromatography. Biochemical characterization of nHRP2 from HB3 culture was conducted by SDS-PAGE and western blotting, and nHRP2 was assayed by RDT, ELISA, and bead-based immunoassay. RESULTS: Purified nHRP2 was identified by SDS-PAGE and western blot as a - 60 kDa protein that bound anti-HRP-2 monoclonal antibodies. Mouse anti-HRP2 monoclonal antibody was found to produce high optical density readings between dilutions of 1:100 and 1:3,200 by ELISA with assay signal observed up to a 1:200,000 dilution. nHRP2 yield from HB3 culture by bead-based immunoassay revealed that both culture supernatant and iRBC lysate were practical sources of large quantities of this antigen, producing a total yield of 292.4 µg of nHRP2 from two pooled culture preparations. Assessment of nHRP2 recognition by RDTs revealed that Carestart Pf HRP2 and HRP2/pLDH RDTs detected purified nHRP2 when applied at concentrations between 20.6 and 2060 ng/mL, performing within a log-fold dilution of commercially-available recombinant HRP2. The band intensity observed for the nHRP2 dilutions was equivalent to that observed for P. falciparum culture strain dilutions of 3D7 and US06 F Nigeria XII between 12.5 and 1000 parasites/µL. CONCLUSIONS: Purified nHRP2 could be a valuable reagent for laboratory applications as well as assessment of new and existing RDTs prior to their use in clinical settings. These results establish that it is possible to extract microgram quantities of the native HRP2 antigen from HB3 culture and that this purified protein is well recognized by existing monoclonal antibody lines and RDTs.
Assuntos
Antígenos de Protozoários/isolamento & purificação , Eritrócitos/química , Eritrócitos/parasitologia , Malária Falciparum/diagnóstico , Plasmodium falciparum/química , Proteínas de Protozoários/isolamento & purificação , Antígenos de Protozoários/imunologia , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , Microesferas , Proteínas de Protozoários/imunologia , Controle de Qualidade , Fatores de TempoRESUMO
BACKGROUND: Rapid diagnostic tests (RDTs) play a key role in malaria case management. The most widely used RDT identifies Plasmodium falciparum based on immunochromatographic recognition of P. falciparum histidine-rich protein 2 (PfHRP2). Deletion of the paralogous pfhrp2 and pfhrp3 genes leads to false-negative PfHRP2-based RDTs, and has been reported in P. falciparum infections from South America and Africa. However, identification of pfhrp2/pfhrp3 deletions has usually been based only on failure to amplify these genes using PCR, without confirmation based on PfHRP2 protein expression, and understanding of the true prevalence of deletions is incomplete. METHODS: Deletions of pfhrp2/pfhrp3 in blood samples were investigated from cross-sectional surveys in 2012-13 in three regions of varied malaria transmission intensity in Uganda. Samples with positive Giemsa-stained thick blood smears, but negative PfHRP2-based RDTs were evaluated by PCR amplification of conserved subunit ribosomal DNA for Plasmodium species, PCR amplification of pfhrp2 and pfhrp3 genes to identify deletions, and bead-based immunoassays for expression of PfHRP2. RESULTS: Of 3516 samples collected in cross-sectional surveys, 1493 (42.5%) had positive blood smears, of which 96 (6.4%) were RDT-negative. Of these 96 RDT-negative samples, P. falciparum DNA was identified by PCR in 56 (58%) and only non-falciparum plasmodial DNA in 40 (42%). In all 56 P. falciparum-positive samples there was a failure to amplify pfhrp2 or pfhrp3: in 25 (45%) pfhrp2 was not amplified, in 39 (70%) pfhrp3 was not amplified, and in 19 (34%) neither gene was amplified. For the 39 P. falciparum-positive, RDT-negative samples available for analysis of protein expression, PfHRP2 was not identified by immunoassay in only four samples (10.3%); these four samples all had failure to amplify both pfhrp2 and pfhrp3 by PCR. Thus, only four of 96 (4.2%) smear-positive, RDT-negative samples had P. falciparum infections with deletion of pfhrp2 and pfhrp3 confirmed by failure to amplify the genes by PCR and lack of expression of PfHRP2 demonstrated by immunoassay. CONCLUSION: False negative RDTs were uncommon. Deletions in pfhrp2 and pfhrp3 explained some of these false negatives, but most false negatives were not due to deletion of the pfhrp2 and pfhrp3 genes.
Assuntos
Antígenos de Protozoários/genética , Deleção de Genes , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Testes Diagnósticos de Rotina , Humanos , Lactente , UgandaRESUMO
BACKGROUND: Rapid accurate diagnosis followed by effective treatment is very important for malaria control. Light microscopy remains the "golden standard" method for malaria diagnosis. Diagnostic test method must have sufficient level of accuracy for detecting malaria parasites. Therefore, this study aimed to investigate the diagnostic accuracy of rapid diagnostic tests (RDTs), microscopy, loop-mediated isothermal amplification (LAMP) and/or polymerase chain reaction (PCR) for the malaria diagnosis in Ethiopia. METHODS: Data bases such as PubMed, PubMed central, Science direct databases, Google scholar, and Scopus were searched from September to October, 2020 for studies assessing the diagnostic accuracy of RDTs, microscopy, LAMP and PCR methods for malaria diagnosis. RESULTS: A total of 29 studies published between 2001 and 2020 were analysed using review manager, Midas (Stata) and Meta-disc. The sensitivity and specificity of studies comparing RDT with microscopy varies from 79%-100% to 80%-100%, respectively. The sensitivity of LAMP (731 tests) was 100% and its specificity was varies from 85 to 99% when compared with microscopy and PCR. Considerable heterogeneity was observed between studies included in this meta-analysis. Meta-regression showed that blinding status and target antigens were the major sources of heterogeneity (P < 0.05). RDT had an excellent diagnostic accuracy (Area under the ROC Curve = 0.99) when compared with microscopy. Its specificity was quite good (93%-100%) except for one outlier (28%), but lower "sensitivity" was observed when PCR is a reference test. This indicates RDT had a good diagnostic accuracy (AUC = 0.83). Microscopy showed a very good diagnostic accuracy when compared with PCR. CONCLUSIONS: The present study showed that microscopy and RDTs had high efficiency for diagnosing febrile malaria patients. The diagnostic accuracy of RDT was excellent when compared with microscopy. This indicates RDTs have acceptable sensitivities and specificities to be used in resource poor settings as an alternative for microscopy. In this study, LAMP showed an excellent sensitivities and specificities. Furthermore, the need of minimum equipment and relatively short time for obtaining results can made LAMP one of the best alternatives especially for accurate diagnosis of asymptomatic malaria.
Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária/diagnóstico , Microscopia/estatística & dados numéricos , Técnicas de Diagnóstico Molecular/estatística & dados numéricos , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Reação em Cadeia da Polimerase/estatística & dados numéricos , Etiópia , HumanosRESUMO
Accurate malaria diagnosis is foundational for control and elimination, and Haiti relies on histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDTs) identifying Plasmodium falciparum in clinical and community settings. In 2017, 1 household and 2 easy-access group surveys tested all participants (N = 32 506) by conventional and high-sensitivity RDTs. A subset of blood samples (n = 1154) was laboratory tested for HRP2 by bead-based immunoassay and for P. falciparum 18S rDNA by photo-induced electron transfer polymerase chain reaction. Both RDT types detected low concentrations of HRP2 with sensitivity estimates between 2.6 ng/mL and 14.6 ng/mL. Compared to the predicate HRP2 laboratory assay, RDT sensitivity ranged from 86.3% to 96.0% between tests and settings, and specificity from 90.0% to 99.6%. In the household survey, the high-sensitivity RDT provided a significantly higher number of positive tests, but this represented a very small proportion (<0.2%) of all participants. These data show that a high-sensitivity RDT may have limited utility in a malaria elimination setting like Haiti.
Assuntos
Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Malária Falciparum/transmissão , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Adolescente , Antígenos de Protozoários/sangue , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , DNA de Protozoário/sangue , DNA de Protozoário/genética , DNA Ribossômico/sangue , DNA Ribossômico/genética , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Haiti/epidemiologia , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/sangue , Proteínas de Protozoários/imunologia , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Malaria rapid diagnostic tests (mRDTs) are the preferred option for programmatic deployment. AIMS: There are numerous mRDTs on the Nigerian market and there is a need to guide practitioners on the relative performance of the commonly used brands of mRDT in Nigeria. SUBJECTS AND METHODS: The performance of three commonly used Histidine-Rich-Protein-2-based mRDTs (SD-Bioline™, Carestart™ and Paracheck-Pf™) against microscopy of Giemsa stained blood and polymerase chain reaction (PCR) was evaluated among 190 febrile under-5 children in Ibadan, Nigeria. We calculated the sensitivity, specificity, predictive values, accuracy, and agreements. RESULTS: There were 53.2% males. The prevalence of malaria parasite by microscopy was 46.8% and 57.9% by PCR. Malaria parasite detection by SD-Bioline™ was 60.5%, Carestart™: 60.0% and Paracheck-Pf™ 60.0%. Using microscopy as the gold standard, the sensitivities of SD-Bioline™, Carestart™ and Paracheck-Pf™ mRDT were 97.8%, 96.7% and 97.8% respectively while the specificities were 73.0%, 72.0% and 74.0% respectively. Using PCR as the gold standard, the sensitivity for both SD-Bioline™ and Paracheck-Pf™ was 85.5% and for CareStart was 84.6% while the specificity of SD-Bioline™, Carestart™, and Paracheck-Pf™ was 73.8%, 72.4%, and 75.0% respectively. The test accuracy was 81.0% for both SD-Bioline™ and Paracheck-Pf™ and 80.0% for Caresatrt™. The kappa coefficient of agreement between PCR and each of SD-Bioline™, Carestart, ParaCheck™ and microscopy was 0.597, 0.578, 0.609 and 0.739 respectively. CONCLUSION: The performance of the three mRDTs is a proof that any of the three is suitable for use in the diagnosis of malaria in the southwest of Nigeria.